K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Đề sai rồi! Sửa đề: Cho \(S_1=\dfrac{b}{a}x+\dfrac{c}{a}z...\)

Giải:

Ta có:

\(S_1+S_2+S_3=\left(\dfrac{b}{a}x+\dfrac{c}{a}z\right)+\left(\dfrac{a}{b}x+\dfrac{c}{b}y\right)\)\(+\left(\dfrac{a}{c}z+\dfrac{b}{c}y\right)\)

\(=\left(\dfrac{b}{a}x+\dfrac{a}{b}x\right)+\left(\dfrac{c}{b}y+\dfrac{b}{c}y\right)+\left(\dfrac{c}{a}z+\dfrac{a}{c}z\right)\)

\(=\left(\dfrac{b}{a}+\dfrac{a}{b}\right)x+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)y+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)z\)

Dễ thấy: \(\left\{{}\begin{matrix}\dfrac{b}{a}+\dfrac{a}{b}\ge2\\\dfrac{c}{b}+\dfrac{b}{c}\ge2\\\dfrac{c}{a}+\dfrac{a}{c}\ge2\end{matrix}\right.\)

\(\Rightarrow S_1+S_2+S_3\ge2x+2y+2z\)

\(=2\left(x+y+z\right)=2.1008=2016\)

Vậy \(S_1+S_2+S_3\ge2016\) (Đpcm)

6 tháng 5 2016

gui giup minh voi guai nhanh

8 tháng 5 2016

xem lại đề

6 tháng 5 2016

\(S_1+S_2+S_3=\left(\frac{b}{a}x+\frac{c}{a}z\right)+\left(\frac{a}{b}x+\frac{c}{b}y\right)+\left(\frac{a}{c}z+\frac{b}{c}y\right)\)

                             \(=\left(\frac{b}{a}x+\frac{a}{b}x\right)+\left(\frac{c}{b}y+\frac{b}{c}y\right)+\left(\frac{c}{a}z+\frac{a}{c}z\right)\)

                              \(=\left(\frac{b}{a}+\frac{a}{b}\right)x+\left(\frac{c}{b}+\frac{b}{c}\right)y+\left(\frac{c}{a}+\frac{a}{c}\right)z\)

(*)Ta cần CM bất đẳng thức sau: \(\frac{a}{b}+\frac{b}{a}\ge2\)

Nhân ab vào 2 vế,ta được:

\(\left(\frac{a}{b}+\frac{b}{a}\right).ab\ge2ab\Rightarrow\frac{a^2b}{b}+\frac{b^2a}{a}\ge2ab\Rightarrow a^2+b^2\ge2ab\Rightarrow a^2+b^2-2ab\ge0\Rightarrow\left(a-b\right)^2\ge0\)

=>BĐT đúng với mọi a;b

Tương tự,ta cũng có: \(\frac{c}{b}+\frac{b}{c}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\)

Do đó \(S_1+S_2+S_3\ge2x+2y+2z=2\left(x+y+z\right)=2.1008=2016\left(đpcm\right)\)

a: =>-2x=90/91

hay x=-45/91

b: =>2x=-7

hay x=-7/2

c: ->-3x=-12

hay x=4

7 tháng 6 2018

chị à vô vị và nhảm nhí quá mà tháng 6 rùi chị ơi

6 tháng 5 2016

Ta có:

\(S_1+S_2+S_3=\left(\frac{b}{a}x+\frac{c}{a}z\right)+\left(\frac{a}{b}x+\frac{c}{b}y\right)+\left(\frac{a}{c}z+\frac{b}{c}y\right)\)

                        \(=\left(\frac{b}{a}x+\frac{a}{b}x\right)+\left(\frac{c}{b}y+\frac{b}{c}y\right)+\left(\frac{c}{a}z+\frac{a}{c}z\right)\)

                       \(=\left(\frac{b}{a}+\frac{a}{b}\right)x+\left(\frac{c}{b}+\frac{b}{c}\right)y+\left(\frac{c}{a}+\frac{a}{c}\right)z\)

Ta cần c/m bất đẳng thức : \(\frac{a}{b}+\frac{b}{a}>=2\)

Nhân ab vào 2 vế ta có:

\(\left(\frac{a}{b}+\frac{b}{a}\right).ab>=2ab=>\frac{a^2b}{b}+\frac{b^2a}{a}>=2ab=>a^2+b^2>=2ab\)

\(=>a^2+b^2-2ab>=0=>\left(a-b\right)^2>=0\)

=>bất đẳng thức đúng với mọi a;b

chứng minh tương tự với \(\frac{b}{c}+\frac{c}{b}>=2;\frac{a}{c}+\frac{c}{a}>=2\);Cộng từng vế các BĐT,ta thu được:

\(S_1+S_2+S_3>=2x+2y+2z=2\left(x+y+z\right)=2.1008=2016\)   (đpcm)

6 tháng 5 2016

sao hông có ai trả lời hết vậy?PLEASE

gianroi