K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2023

A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)

A=(c^2-(a-b)^2).((a+b)^2-c^2)

A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)

Do c+b-a>0

c+a-b>0

a+b-c>0

a+b+c>0

=>A>0

@Hà Nhung Huyền Trang

9 tháng 9 2017

Từ giả thiết suy ra 
(a-b)^2+(b-c)^2+(a-c)^2=0 (nhân bung cái này sẽ ra cái giả thiết ban đầu). 
Từ đó suy ra: a=b, b=c và c=a. (Do tổng của 3 bình phương mà lại bằng 0 tức là các bình phương đó đều phải bằng 0). Suy ra tam giác đó đều 

P/s: Tham khảo nhé

9 tháng 9 2017

\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)

\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)

\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)

\(=\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)\)

Do a;b;c là độ dài 3 cạnh tam giác nên \(c>a-b;c>b-a;a+b+c>0;a+b>c\)

\(\Rightarrow c-a+b>0;c+a-b>0;a+b+c>0;a+b-c>0\)

Nên \(\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)>0\)

Hay \(A>0\)(đpcm)

15 tháng 9 2016

Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé

15 tháng 9 2016

bài 1 :

 Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2 
--> a + b + c = 2 

Trong 1 tam giác thì ta có: 
a < b + c 
--> a + a < a + b + c 
--> 2a < 2 
--> a < 1 

Tương tự ta có : b < 1, c < 1 

Suy ra: (1 - a)(1 - b)(1 - c) > 0 
⇔ (1 – b – a + ab)(1 – c) > 0 
⇔ 1 – c – b + bc – a + ac + ab – abc > 0 
⇔ 1 – (a + b + c) + ab + bc + ca > abc 

Nên abc < -1 + ab + bc + ca 
⇔ 2abc < -2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2 
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2 
⇔ a² + b² + c² + 2abc < 2 

--> đpcm 

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho!!

20 tháng 10 2021

AH
Akai Haruma
Giáo viên
20 tháng 10 2021

Lời giải:
\(A=(2ab)^2-(a^2+b^2-c^2)^2=[2ab+(a^2+b^2-c^2)][2ab-(a^2+b^2-c^2)]\)

\(=[(a+b)^2-c^2][c^2-(a-b)^2]=(a+b-c)(a+b+c)(c-a+b)(c+a-b)\)

\(=(a+b+c)(a+b-c)(b+c-a)(c+a-b)>0\) theo BĐT tam giác

Do đó ta có đpcm.

14 tháng 4 2017

dùng BĐT tam giác là ra

27 tháng 9 2017

ta có 4a2b2c2=(2bc)2

=(2bc)2-(b2+c2-a2)

dùng hằng đăng thức thứ 3 + hằng đẳng thức thứ 1 ta được

=[-(b-c)2+a2].[(b+c)2-a2]

<=>[a2-(b-c)2].[(b+c)2-a2]

=(a+c-b).(a+b-c).(b+c-a).(b+c+a)

dùng bất đẳng thức tam giác bạn tự kết luận nha

27 tháng 9 2017

Bài này chỉ chứng minh được khi 2 tam giác vuông với 2 cạnh là a và b

Ta có :

\(c^2+b^2=c^2\)

\(\Rightarrow\)\(a^2+b^2-c^2=0\)          ( 1 )

Thay 1 vào :

\(4a^2b^2-0\)

\(=4a^2b^2\)

\(\Rightarrow\)