\(\frac{2ab}{b_{ }^2+1}\). Xét: P=\(\frac{\sqrt{a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2020

\(A=\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{\left(x-1\right)\left(x+1\right)}}\right).\left(\frac{\sqrt{\left(x-1\right)\left(x+1\right)}}{\sqrt{x+1}-\sqrt{x-1}}\right)=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}\)

\(=\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{2}=\frac{2\left(x+\sqrt{x^2-1}\right)}{2}=x+\sqrt{x^2-1}\)

Thế vào rồi tính nhé

\(\)

1 tháng 9 2020

Ta có: \(A=\left(\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{x-1}}\right):\left(\frac{1}{\sqrt{x+1}}-\frac{1}{\sqrt{x-1}}\right)\)   \(\left(ĐK:x\ge1\right)\)

    \(\Leftrightarrow A=\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}.\sqrt{x-1}}\right).\left(\frac{\sqrt{x+1}.\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}\right)\)

    \(\Leftrightarrow A=\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right).\left(\sqrt{x+1}-\sqrt{x-1}\right)}{\left(\sqrt{x+1}-\sqrt{x-1}\right)^2}\)

    \(\Leftrightarrow A=\frac{x+1-x+1}{x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}}\)

    \(\Leftrightarrow A=\frac{2}{2x+2\sqrt{x^2-1}}\)

Thay \(x=\frac{a^2+b^2}{2ab}\)vào phương trình \(A,\)ta có: 

          \(A=\frac{1}{\frac{a^2+b^2}{2ab}+\sqrt{\left(\frac{a^2+b^2}{2ab}+1\right)\left(\frac{a^2+b^2}{2ab}-1\right)}}\)

   \(\Leftrightarrow A=\frac{1}{\frac{a^2+b^2}{2ab}+\sqrt{\left(\frac{a^2+2ab+b^2}{2ab}\right)\left(\frac{a^2-2ab+b^2}{2ab}\right)}}\)

   \(\Leftrightarrow A=\frac{1}{\frac{a^2+b^2}{2ab}+\sqrt{\frac{\left(a+b\right)^2\left(a-b\right)^2}{\left(2ab\right)^2}}}\)

   \(\Leftrightarrow A=\frac{1}{\frac{a^2+b^2}{2ab}+\frac{\left(a+b\right)\left(a-b\right)}{2ab}}\)

   \(\Leftrightarrow A=\frac{1}{\frac{a^2+b^2+a^2-b^2}{2ab}}\)

   \(\Leftrightarrow A=\frac{2ab}{2a^2}\)

   \(\Leftrightarrow A=\frac{b}{a}\)

Chúc bn hok tốt

19 tháng 8 2020

Bài 1 : 

a) \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)

\(P=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

\(P=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}}\)

\(P=\frac{\sqrt{x}+1}{x}\)

b) \(P>\frac{1}{2}\)

\(\Leftrightarrow\frac{\sqrt{x}+1}{x}>\frac{1}{2}\)

\(\Leftrightarrow\frac{\sqrt{x}+1}{x}-\frac{1}{2}>0\)

\(\Leftrightarrow\frac{\sqrt{x}+1-2x}{x}>0\)

\(\Leftrightarrow\sqrt{x}-2x+1>0\left(x>0\right)\)

\(\Leftrightarrow\sqrt{x}+x^2-2x+1-x^2>0\)

\(\Leftrightarrow\sqrt{x}+x^2+\left(x-1\right)^2>0\left(\forall x>0\right)\)

Vậy P > 1/2 với mọi x> 0 ; x khác 1

19 tháng 8 2020

Bài 2 : 

a) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+a}+\frac{2}{a-1}\right)\)

\(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\frac{2}{a-1}\right)\)

\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1+2\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}\left(a-1\right)\left(\sqrt{a}+1\right)}\)

\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1+2a+2\sqrt{a}}\)

\(K=\frac{\left(a-1\right)^2}{3a+2\sqrt{a}-1}\)

b) \(a=3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)( thỏa mãn ĐKXĐ )

Thay a vào biểu thức K , ta có :

\(K=\frac{\left(3+2\sqrt{2}-1\right)^2}{3\left(3+2\sqrt{2}\right)+2\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{9+6\sqrt{2}+2\left|\sqrt{2}+1\right|-1}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{8+6\sqrt{2}+2\sqrt{2}+2}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{10+8\sqrt{2}}\)