Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(VT=\dfrac{a^2b}{a-b}\cdot\dfrac{2\sqrt{2}\left(a-b\right)}{5\sqrt{3}\cdot a^2\sqrt{b}}=\dfrac{2}{15}\cdot\sqrt{6b}=VP\)
1: \(=9\sqrt{ab}+\dfrac{7\sqrt{ab}}{b}-\dfrac{5\sqrt{ab}}{a}-3\sqrt{ab}=\)6căn ab+căn ab(7/b-5/a)
=căn ab(6+7/b-5/a)
Lời giải:
Sử dụng PP khai triển :
\(\frac{a+b}{\sqrt{a(3a+b)+b(3b+a)}}\geq \frac{1}{2}\)
\(\Leftrightarrow \frac{(a+b)^2}{a(3a+b)+b(3b+a)}\geq \frac{1}{4}\)
\(\Leftrightarrow 4(a+b)^2\geq a(3a+b)+b(3b+a)\)
\(\Leftrightarrow a^2+b^2+6ab\geq 0\)
\(\Leftrightarrow (a+b)^2+4ab\geq 0\). Điều này luôn đúng với \(a,b\geq 0\) tuy nhiên dấu bằng không xảy ra do \(a,b\neq 0\)
Do đó: \(\frac{a+b}{\sqrt{a(3a+b)+b(3b+a)}}> \frac{1}{2}\)
mk nghĩ đề bài như này ms đúng chứ
\(\dfrac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\dfrac{1}{2}\)
vs a,b>0
cm \(vt=\dfrac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\)
\(\ge\dfrac{2\left(a+b\right)}{\dfrac{4a+3a+b}{2}+\dfrac{4b+3b+a}{2}}=\dfrac{2\left(a+b\right)}{\dfrac{8\left(a+b\right)}{2}}=\dfrac{1}{2}\)(dpcm)
dau = xay ra khi a=b>0
a) \(\sqrt{\dfrac{3+\sqrt{5}}{2x^2}}-\sqrt{\dfrac{3-\sqrt{5}}{2}}\)
= \(\sqrt{\dfrac{6+2\sqrt{5}}{4x^2}}-\sqrt{\dfrac{6-2\sqrt{5}}{4}}=\sqrt{\dfrac{5+2\sqrt{5}+1}{4x^2}}-\sqrt{\dfrac{5-2\sqrt{5}+1}{4}}\) = \(\sqrt{\dfrac{\left(\sqrt{5}+1\right)^2}{\left(2x\right)^2}}-\sqrt{\dfrac{\left(\sqrt{5}-1\right)^2}{2^2}}=\dfrac{\left|\sqrt{5}+1\right|}{\left|2x\right|}-\dfrac{\left|\sqrt{5}-1\right|}{2}=\dfrac{\sqrt{5}+1}{2x}-\dfrac{\sqrt{5}-1}{2}\)
Thay x = 1 vào biểu thức \(\dfrac{\sqrt{5}+1}{2x}-\dfrac{\sqrt{5}-1}{2}\) ta được :
\(\dfrac{\sqrt{5}+1}{2}-\dfrac{\sqrt{5}-1}{2}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{2}=1\)
Vậy tại x =1 thì giá trị của biểu thức \(\sqrt{\dfrac{3+\sqrt{5}}{2x^2}}-\sqrt{\dfrac{3-\sqrt{5}}{2}}\) là bằng 1
b) \(\dfrac{\sqrt{a^3+4a^2+4a}}{\sqrt{a\left(a^2-2ab+b^2\right)}}-\dfrac{\sqrt{b^3-4b^2+4b}}{\sqrt{b\left(a^2-2ab+b^2\right)}}+ab\)
= \(\sqrt{\dfrac{a\left(a^2+4a+4\right)}{a\left(a^2-2ab+b^2\right)}}-\sqrt{\dfrac{b\left(b^2-4b+4\right)}{b\left(a^2-2ab+b^2\right)}}+ab\)
= \(\dfrac{\sqrt{\left(a+2\right)^2}}{\sqrt{\left(a-b\right)^2}}-\dfrac{\sqrt{\left(b-2\right)^2}}{\sqrt{\left(a-b\right)^2}}+ab=\dfrac{a+2}{a-b}-\dfrac{b-2}{a-b}+ab\) = a - b + ab
Thay a = 4 và b = 3 vào biểu thức a - b +ab ta được :
4 - 3 + 4.3 = 13
Vậy tại a = 4 ; b = 3 thì giá trị của biểu thức \(\dfrac{\sqrt{a^3+4a^2+4a}}{\sqrt{a\left(a^2-2ab+b^2\right)}}-\dfrac{\sqrt{b^3-4b^2+4b}}{\sqrt{b\left(a^2-2ab+b^2\right)}}+ab\) là bằng 13
c) \(ab^2.\sqrt{\dfrac{4}{a^2b^4}}+ab=ab^2.\dfrac{2}{ab^2}+ab=2+ab\)
Thay a = 1 và b = -2 vào BT : 2 + ab ta được :
2 + 1.(-2) = 2 + (-2) = 0
Vậy tại a = 1 ; b = -2 thì giá trị của biểu thức \(ab^2.\sqrt{\dfrac{4}{a^2b^4}}+ab\) là bằng 0
d) \(\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^2}{a^2+2ab+b^2}}\) = \(\dfrac{a+b}{b^2}.\dfrac{\sqrt{a^2b^2}}{\sqrt{a^2+2ab+b^2}}=\dfrac{a+b}{b^2}.\dfrac{ab}{a+b}=\dfrac{ab}{b^2}\)
Thay a = 1 ; b =2 vào BT : \(\dfrac{ab}{b^2}\) ta được : \(\dfrac{1.2}{2^2}=\dfrac{1}{2}\)
Vậy tại a =1 ; b =2 GT của BT : \(\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^2}{a^2+2ab+b^2}}\) là \(\dfrac{1}{2}\)
b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)
\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)
\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)
\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)
\(VT=0=VP\)
Bài 1:
a: \(=\dfrac{1}{mn^2}\cdot\dfrac{n^2\cdot\left(-m\right)}{\sqrt{5}}=\dfrac{-\sqrt{5}}{5}\)
b: \(=\dfrac{m^2}{\left|2m-3\right|}=\dfrac{m^2}{3-2m}\)
c: \(=\left(\sqrt{a}+1\right):\dfrac{\left(a-1\right)^2}{\left(1-\sqrt{a}\right)}=\dfrac{-\left(a-1\right)}{\left(a-1\right)^2}=\dfrac{-1}{a-1}\)
đừng tag tui, tui k làm đâu
bạn biết làm ko chỉ mình với