Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=\(\frac{\frac{\left(2m+2\right)\left[\frac{\left(2m-2\right)}{2}+1\right]}{2}}{m}\)=\(\frac{\left(m+1\right).m}{m}=m+1\)
B=\(\frac{\frac{\left(2n+2\right)\left[\frac{\left(2n-2\right)}{2}+2\right]}{2}}{m}=\frac{\left(n+1\right).n}{n}=n+1\)
Mà A>B =>m+1>n+1
Mà m, n thuộc Z+
=>m>n
Có : \(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì b > 0 => b + 2001 > 0 => b(b+2001) > 0
+ Nếu a < b => ab + 2001a < ab + 2001b => \(\frac{ab+2001a}{b\left(b+2001\right)}< \frac{ab+2001b}{b\left(b+2001\right)}\Rightarrow\frac{a}{b}< \frac{a+2001}{b+2001}\)
+ Nếu a < b => ..............................................................................................................=> \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
+ Nếu a = b => \(\frac{a}{b}=\frac{a+2001}{b+2001}\)
\(\left(a+b\right)^2=a^2+b^2+2ab\)
Mà \(a,b\in\) N*
⇒2ab>0
⇒\(a^2+b^2+2ab>a^2+b^2\)
a) a lớn hơn hoặc b lớn hơn
b)có thể a+b=-c hoặc a+b=c nên ta có kq giống ý a
MÌNH CŨNG HỌC LỚP 6 NÈ ^^