K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2015

thiếu đề : phải là 1/p = 1/a^2 +1/b^2 thì mình giải dc

7 tháng 5 2015

Giả sử p là số nguyên tố. Từ a^2.b^2=p(a^2+b^2)=>a^2+b^2chia hết cho p hoặc achia hết cho p và b chia hết cho p (1)

=> a^2.b^2 chia hết cho p^2 => p(a^2+b^2)chia hết cho p2 =>a2+b2 chia hết cho p (2). Từ (1) và (2) =>a chia hết cho p và b chia hết cho p.

Từ a\(\ge\)p , b\(\ge\)p => \(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{2}{p^2}=>\frac{1}{p}\le\frac{2}{p^2}=>p\le2\left(3\right)\)

Từ a> 2, b > 2 => \(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\Rightarrow p>2\left(4\right)\)

Từ (3), (4) => mâu thuẫn  => p là hợp số.

đúng mình cái

29 tháng 5 2017

Giải:

Giả sử \(p\) là số nguyên tố.

Từ \(a^2b^2=p\left(a^2+b^2\right)\Rightarrow a^2+b^2⋮p\) hoặc \(a⋮p\)\(b⋮p\left(1\right)\)

\(\Rightarrow a^2b^2⋮p^2\Rightarrow p\left(a^2+b^2\right)⋮p^2\Rightarrow a^2+b^2⋮p\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow a⋮p\)\(b⋮p\)

Từ \(a\ge p,b\ge p\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\le\frac{2}{p^2}\Rightarrow\frac{1}{p}\le\frac{2}{p^2}\Rightarrow p\le2\left(3\right)\)

Từ \(a>2,b>2\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\Rightarrow p>2\left(4\right)\)

Từ \(\left(3\right),\left(4\right)\Rightarrow\) Mâu thuẫn \(\Rightarrow p\) là hợp số (Đpcm).

29 tháng 5 2017
chịu thôi
NV
21 tháng 9 2021

\(\Leftrightarrow c-a=\dfrac{b}{a}-\dfrac{1}{b}=\dfrac{b^2-a}{ab}\)

\(\Rightarrow b^2-a=ab\left(c-a\right)\Rightarrow b^2=a\left[b\left(c-a\right)+1\right]\)

\(\Rightarrow b^2⋮b\left(c-a\right)+1\) (1)

Nếu \(b\left(c-a\right)+1\ne1\) , do b và \(b\left(c-a\right)+1\) nguyên tố cùng nhau

\(\Rightarrow b⋮̸b\left(c-a\right)+1\Rightarrow b^2⋮̸b\left(c-a\right)+1\) trái với (1)

\(\Rightarrow b\left(c-a\right)+1=1\Rightarrow c=a\)

\(\Rightarrow b^2=a\Rightarrow ab=b^3\) là lập phương 1 số tự nhiên

1 tháng 6 2015

Giả sử p là số nguyên tố .

Từ \(\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{p}\Rightarrow a^2b^2=p\left(a^2+b^2\right)\Rightarrow a^2+b^2\) chia hết có p hoặc a chai hết cho p,b chia hết cho p (1) \(\Rightarrow a^2b^2\)chia het cho \(p^2\Rightarrow a^2+b^2\)chia het cho p(2).

Tu (1) va (2) => chia het cho p,b chia het cho p .Tu \(a\ge p,b\ge p\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\le\frac{2}{p^2}\Leftrightarrow\frac{1}{p}\le\frac{2}{p^2}\Rightarrow p\le2\left(3\right).\)

Tu a>2 ,b>2\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}2\left(4\right)\)

(3) và (4) mâu thuẫn => là hop số 

27 tháng 12 2020

Nguyễn Việt Lâm; Nguyễn Lê Phước Thịnh giúp vs!

NV
27 tháng 12 2020

Gọi \(d=ƯC\left(n^2+4;n+5\right)\)

\(\Rightarrow n\left(n+5\right)-\left(n^2+4\right)⋮d\)

\(\Rightarrow5n-4⋮d\)

\(\Rightarrow5\left(n+5\right)-29⋮d\)

\(\Rightarrow29⋮d\)

\(\Rightarrow d=\left\{1;29\right\}\)

Phân số chưa tối giản \(\Leftrightarrow d\ne1\Rightarrow d=29\)

\(\Rightarrow n+5=29k\Rightarrow n=29k-5\)

\(1\le29k-5\le2020\Rightarrow\dfrac{6}{29}\le k\le\dfrac{2025}{29}\)

\(\Leftrightarrow1\le k\le69\Rightarrow\) có 69 số tự nhiên thỏa mãn