Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử p là số nguyên tố. Từ a^2.b^2=p(a^2+b^2)=>a^2+b^2chia hết cho p hoặc achia hết cho p và b chia hết cho p (1)
=> a^2.b^2 chia hết cho p^2 => p(a^2+b^2)chia hết cho p2 =>a2+b2 chia hết cho p (2). Từ (1) và (2) =>a chia hết cho p và b chia hết cho p.
Từ a\(\ge\)p , b\(\ge\)p => \(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{2}{p^2}=>\frac{1}{p}\le\frac{2}{p^2}=>p\le2\left(3\right)\)
Từ a> 2, b > 2 => \(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\Rightarrow p>2\left(4\right)\)
Từ (3), (4) => mâu thuẫn => p là hợp số.
đúng mình cái
Giải:
Giả sử \(p\) là số nguyên tố.
Từ \(a^2b^2=p\left(a^2+b^2\right)\Rightarrow a^2+b^2⋮p\) hoặc \(a⋮p\) và \(b⋮p\left(1\right)\)
\(\Rightarrow a^2b^2⋮p^2\Rightarrow p\left(a^2+b^2\right)⋮p^2\Rightarrow a^2+b^2⋮p\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow a⋮p\) và \(b⋮p\)
Từ \(a\ge p,b\ge p\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\le\frac{2}{p^2}\Rightarrow\frac{1}{p}\le\frac{2}{p^2}\Rightarrow p\le2\left(3\right)\)
Từ \(a>2,b>2\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\Rightarrow p>2\left(4\right)\)
Từ \(\left(3\right),\left(4\right)\Rightarrow\) Mâu thuẫn \(\Rightarrow p\) là hợp số (Đpcm).
\(\Leftrightarrow c-a=\dfrac{b}{a}-\dfrac{1}{b}=\dfrac{b^2-a}{ab}\)
\(\Rightarrow b^2-a=ab\left(c-a\right)\Rightarrow b^2=a\left[b\left(c-a\right)+1\right]\)
\(\Rightarrow b^2⋮b\left(c-a\right)+1\) (1)
Nếu \(b\left(c-a\right)+1\ne1\) , do b và \(b\left(c-a\right)+1\) nguyên tố cùng nhau
\(\Rightarrow b⋮̸b\left(c-a\right)+1\Rightarrow b^2⋮̸b\left(c-a\right)+1\) trái với (1)
\(\Rightarrow b\left(c-a\right)+1=1\Rightarrow c=a\)
\(\Rightarrow b^2=a\Rightarrow ab=b^3\) là lập phương 1 số tự nhiên
Giả sử p là số nguyên tố .
Từ \(\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{p}\Rightarrow a^2b^2=p\left(a^2+b^2\right)\Rightarrow a^2+b^2\) chia hết có p hoặc a chai hết cho p,b chia hết cho p (1) \(\Rightarrow a^2b^2\)chia het cho \(p^2\Rightarrow a^2+b^2\)chia het cho p(2).
Tu (1) va (2) => chia het cho p,b chia het cho p .Tu \(a\ge p,b\ge p\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\le\frac{2}{p^2}\Leftrightarrow\frac{1}{p}\le\frac{2}{p^2}\Rightarrow p\le2\left(3\right).\)
Tu a>2 ,b>2\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}2\left(4\right)\)
(3) và (4) mâu thuẫn => là hop số
Gọi \(d=ƯC\left(n^2+4;n+5\right)\)
\(\Rightarrow n\left(n+5\right)-\left(n^2+4\right)⋮d\)
\(\Rightarrow5n-4⋮d\)
\(\Rightarrow5\left(n+5\right)-29⋮d\)
\(\Rightarrow29⋮d\)
\(\Rightarrow d=\left\{1;29\right\}\)
Phân số chưa tối giản \(\Leftrightarrow d\ne1\Rightarrow d=29\)
\(\Rightarrow n+5=29k\Rightarrow n=29k-5\)
\(1\le29k-5\le2020\Rightarrow\dfrac{6}{29}\le k\le\dfrac{2025}{29}\)
\(\Leftrightarrow1\le k\le69\Rightarrow\) có 69 số tự nhiên thỏa mãn