Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức trên ta có ( 1 + a 2 ) ( 1 + b 2 ) ≥ 1 + a b = 1 + a + b (1)
Với mọi x, y > 0, áp dụng bất đẳng thức Côsi cho 2 số dương ta có:
1 x + 1 y ( x + y ) ≥ 2 1 x . 1 y .2 x y = 4 ⇒ 1 x + 1 y ≥ 4 x + y (2)
Áp dụng (1) và (2) ta có:
P ≥ 4 a 2 + 2 a + b 2 + 2 b + 1 + a + b = 4 a 2 + b 2 + 2 a b + 1 + a + b = 4 ( a + b ) 2 + a + b 8 + 7 ( a + b ) 8 + 1
Áp dụng bất đẳng thức Côsi cho 2 số dương ta có:
a + b = a b ≤ ( a + b ) 2 4 ⇒ ( a + b ) 2 ≥ 4 ( a + b ) ⇒ a + b ≥ 4
Áp dụng bất đẳng thức Côsi cho 2 số dương ta có:
4 ( a + b ) 2 + a + b 16 + a + b 16 ≥ 3 4 ( a + b ) 2 . a + b 16 . a + b 16 3 = 3 4 ⇒ P ≥ 3 4 + 7 8 .4 + 1 = 21 4
Dấu bằng xảy ra khi a = b = 2. Vậy giá trị nhỏ nhất của P là 21/4
GT => (a+1)(b+1)(c+1)=(a+1)+(b+1)+(c+1)
Đặt \(\frac{1}{a+1}=x,\frac{1}{1+b}=y,\frac{1}{c+1}=z\), ta cần tìm min của\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)với xy+yz+zx=1
\(\Leftrightarrow\frac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\Leftrightarrow\frac{2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Mà (x+y)(y+z)(z+x) >= 8/9 (x+y+z)(xy+yz+xz) >= \(\frac{8\sqrt{3}}{9}\) nên \(M\)=< \(\frac{3\sqrt{3}}{4}\),dấu bằng xảy ra khi a=b=c=\(\sqrt{3}-1\)
Theo giả thiết, ta có: \(abc+ab+bc+ca=2\)
\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1=a+b+c+3\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(a+1\right)+\left(b+1\right)+\left(c+1\right)\)
\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}=1\)
Đặt \(\left(a+1;b+1;c+1\right)\rightarrow\left(\frac{\sqrt{3}}{x};\frac{\sqrt{3}}{y};\frac{\sqrt{3}}{z}\right)\). Khi đó giả thiết bài toán được viết lại thành xy + yz + zx = 3
Ta có: \(M=\Sigma_{cyc}\frac{a+1}{a^2+2a+2}=\Sigma_{cyc}\frac{a+1}{\left(a+1\right)^2+1}\)\(=\Sigma_{cyc}\frac{1}{a+1+\frac{1}{a+1}}=\Sigma_{cyc}\frac{1}{\frac{\sqrt{3}}{x}+\frac{x}{\sqrt{3}}}\)
\(=\sqrt{3}\left(\frac{x}{x^2+3}+\frac{y}{y^2+3}+\frac{z}{z^2+3}\right)\)
\(=\sqrt{3}\text{}\Sigma_{cyc}\left(\frac{x}{x^2+xy+yz+zx}\right)=\sqrt{3}\Sigma_{cyc}\frac{x}{\left(x+y\right)\left(x+z\right)}\)
\(\le\frac{\sqrt{3}}{4}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)=\frac{3\sqrt{3}}{4}\)
Đẳng thức xảy ra khi \(x=y=z=1\)hay \(a=b=c=\sqrt{3}-1\)
Ta có: \(12=a+b+2ab\ge2ab+2\sqrt{ab}\Rightarrow0< ab\le4\)
Chú ý: \(2ab=12-a-b\) . Do đó:
\(A=\frac{2a^2+2ab}{2a+4b}+\frac{2b^2+2ab}{4a+2b}\)
\(=\frac{2\left(a^2+4\right)+4-a-b}{2a+4b}+\frac{2\left(b^2+4\right)+4-a-b}{4a+2b}\)
\(\ge\frac{7a-b+4}{2a+4b}+\frac{7b-a+4}{4a+2b}=\frac{7\left(a-b\right)^2+108\left(4-ab\right)}{6\left(2a+b\right)\left(a+2b\right)}+\frac{8}{3}\ge\frac{8}{3}\)
P/s: Em chưa check lại đâu, anh tự check đi:D Và chú ý cái dấu "=" cuối cùng của em chỉ đúng khi a + b +2ab = 12.
Cách khác:
Dễ thấy \(0< ab\le4\) (như bài trên)
\(A-\frac{8}{3}=\frac{2\left(a-2\right)^2}{2a+4b}+\frac{2\left(b-2\right)^2}{4a+2b}+\frac{7\left(a-b\right)^2+108\left(4-ab\right)}{6\left(2a+b\right)\left(a+2b\right)}\ge0\)
P/s: Nếu bài trên đúng thì bài này đúng, bài trên sai thì bài này sai, vì bài này được suy ra từ bài trên:v
Bìa này muốn làm cân 2 bước nha
Bước 1 ) CM BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
nó được CM như sau
áp dụng BĐT cô si ta đc
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3.\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9.\sqrt[3]{xyz.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9\)
dấu = xảy ra khi x=y=z
Bước 2 ) Theo CM bước 1 . áp dụng ta đc
\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}=\frac{ab}{9}.\frac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}.\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
CM tương tự ta đc
\(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{2c}\right)\)
\(\frac{ca}{c+3a+2b}\le\frac{ca}{9}\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{2a}\right)\)
cộng zế zới zế ta đc
\(A\le\frac{1}{9}\left(\frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b}+\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)\)
\(A\le\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}=\frac{6}{6}=1\)
=> MAx A=1 khi a=b=c=2
cac cap tam giac co dien h bang nhau la AOB va BOC. Vi co cap song song voi nhau va cat toi diem O
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2}=\dfrac{\sqrt{5}}{2}\left(a+b\right)\)
Tương tự:
\(\sqrt{2b^2+bc+2c^2}\ge\dfrac{\sqrt{5}}{2}\left(b+c\right)\) ; \(\sqrt{2c^2+ca+2a^2}\ge\dfrac{\sqrt{5}}{2}\left(c+a\right)\)
Cộng vế với vế:
\(P\ge\sqrt{5}\left(a+b+c\right)\ge\dfrac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^3=\dfrac{\sqrt{5}}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{9}\)
Lời giải:
$A=\frac{a(a+2b)-ab}{a+2b}+\frac{b(2a+b)-ab}{2a+b}$
$=a+b-\left(\frac{ab}{a+2b}+\frac{ab}{2a+b}\right)$
Áp dụng BĐT Cauchy-Schwarz:
$\frac{ab}{a+2b}+\frac{ab}{2a+b}\leq \frac{ab}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)+\frac{ab}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)=\frac{a+b}{3}$
$\Rightarrow A\geq \frac{2}{3}(a+b)$
Mà:
$12=a+b+2ab\leq a+b+\frac{(a+b)^2}{2}$ (theo BĐT AM-GM)
$\Leftrightarrow (a+b)^2+2(a+b)-24\geq 0$
$\Leftrightarrow (a+b+6)(a+b-4)\geq 0$
$\Rightarrow a+b\geq 4$
Do đó: $A\geq \frac{2}{3}(a+b)\geq \frac{8}{3}$
Vậy $A_{\min}=\frac{8}{3}$
Dấu "=" xảy ra khi $a=b=2$