Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\)
\(=\frac{b+a}{ab}-\frac{4}{a+b}\)
\(=\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\)
\(=\frac{a^2+b^2+2ab-4ab}{ab\left(a+b\right)}\)
\(=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) ( luôn đúng ) ( do a;b > 0 )
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}a-b=0\\a;b>0\end{cases}}\Rightarrow a=b>0\)
Vậy ...
vì \(a+b+c=1\)
\(< =>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)
\(=3+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{c}{b}+\frac{b}{c}+\frac{a}{c}\)
\(=3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)
ta có pt:
\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\right)\)
\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{3}{4}+\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\)
áp dụng bđt cô- si( cauchy) gọi pt là P
\(P\ge2\sqrt{\frac{ab}{a^2+b^2}\frac{a^2+b^2}{4ab}}+2\sqrt{\frac{bc}{b^2+c^2}\frac{b^2+c^2}{4bc}}+2\sqrt{\frac{ca}{c^2+a^2}\frac{c^2+a^2}{4ca}}+\frac{3}{4}\)
\(P\ge2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+\frac{3}{4}\)
\(P\ge2.\frac{1}{2}+2.\frac{1}{2}+2.\frac{1}{2}+\frac{3}{4}\)
\(P\ge1+1+1+\frac{3}{4}=\frac{15}{4}\)
dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
<=>ĐPCM
\(Để\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\left(đpcm\right)\)
Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(Luôn đúng)
Vì a+b+c=1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=2+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)
Do đó
\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{ab}\right)+\left(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{bc}\right)+\left(\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}\right)+\frac{3}{4}\)
\(\ge2\sqrt{\frac{ab}{a^2+b^2}\cdot\frac{a^2+b^2}{ab}}+2\sqrt{\frac{bc}{c^2+b^2}\cdot\frac{c^2+b^2}{bc}}+2\sqrt{\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}}+\frac{3}{4}\)
\(=2\cdot\frac{1}{2}+2\cdot\frac{1}{2}+\frac{2}{3}=\frac{15}{4}\)
Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)
Bài 1 với bài 2 như nhau, đăng làm gì cho tốn công :))
Áp dụng bất đẳng thức Cauchy ta có :
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)
\(\frac{ab}{c}+\frac{ca}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ca}{b}}=2a\)
\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng vế với vế ta được :
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)(đpcm)
ta có a+bc=a(a+b+c)+ab=(a+b)(a+c)
tương tự b+ca=(b+c)(a+b)
c+ab=(a+c)(b+c)
ad bđt cô si cho 3 số dương ta có
a^3/(a+b)(a+c)+a+b/8+a+c/8 >=3a/4
tương tự bạn lm tiếp nhé
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (*)
<=>\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)
<=>\(\frac{b\left(a+b\right)+a\left(a+b\right)-4ab}{ab\left(a+b\right)}\ge0\)
<=>\(\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\)
<=>\(\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(1)
Vì (1) luôn đúng \(\forall a,b\subsetℕ^∗\)
Nên (*) đúng
biến đổi tương đương như bạn kia hoặc Bunyakovsky dạng phân thức cũng được
#)Giải :
Ta có :
\(\hept{\begin{cases}\frac{ab}{b+c+a+b}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\\\frac{bc}{a+b+a+c}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\\\frac{ac}{b+c+a+b}\le\frac{ac}{4}\left(\frac{1}{b+c}+\frac{1}{a+b}\right)\end{cases}}\)
\(\Rightarrow VT\le\frac{1}{a+b}.\left(\frac{bc}{4}+\frac{ac}{4}\right)+\frac{1}{a+c}.\left(\frac{bc}{4}+\frac{ab}{4}\right)+\frac{1}{b+c}.\left(\frac{ac}{4}+\frac{ab}{4}\right)\)
\(=\frac{1}{a+b}.\frac{c\left(a+b\right)}{4}+\frac{1}{a+c}.\frac{b\left(a+c\right)}{4}+\frac{1}{b+c}.\frac{a\left(b+c\right)}{4}\)
\(=\frac{c}{4}+\frac{b}{4}+\frac{a}{4}\)
\(\Rightarrow\frac{a+b+c}{4}\)
\(\Rightarrowđpcm\)
Xét hiệu :
\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\)
\(=\frac{b+a}{ab}-\frac{4}{a+b}\)
\(=\frac{a+b}{ab}-\frac{4}{a+b}\)
\(=\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\)
\(=\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\)
\(=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\)
Có \(\left(a-b\right)^2\ge0\)
Mà a , b dương \(\Rightarrow\)\(ab\left(a+b\right)\ge0\)
\(\Rightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)
Hay \(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(đpcm\right)\)
\(\frac{1}{a}\)+ \(\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\)\(\frac{b\left(a+b\right)}{ab\left(a+b\right)}+\frac{a\left(a+b\right)}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)
\(\Rightarrow\)b( a + b ) + a( a + b ) \(\ge\)4ab
\(\Leftrightarrow\)ab + b2 + a2 + ab - 4ab \(\ge\)0
\(\Leftrightarrow\)a2 - 2ab + b2 \(\ge\) 0
\(\Leftrightarrow\)( a - b )2 \(\ge\)0 ( luôn đúng với \(\forall\)a , b)
Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)