K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

Bài 45 :

a ) Theo bài ra ta có :

a = 9.k + 6

a = 3.3.k + 3.2

\(\Rightarrow a⋮3\)

b ) Theo bài ra ta có :

a = 12.k + 9 

a = 3.4.k + 3.3

\(\Rightarrow a⋮3\)

Vì : \(a⋮3\Rightarrow a⋮6\)

c ) Ta thấy :

30 x 31 x 32 x ...... x 40 + 111

= 37 x 30 x ....... x 40 + 37 x 3

\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)

Bài 46 :

a ) số thứ nhất là n số thứ 2 là n+1 
tích của chúng là 
n(n+1) 
nếu n = 2k ( tức n là số chẵn) 
tích của chúng là 
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là 
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn 

Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2

b ) Nếu n là số lẻ thì : n + 3 là số chẵn 

Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2

Nếu n là số chẵn thì :

n . ( n + 3 ) luôn chi hết cho 2 

c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6 

Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7

Vì 1 ; 3 ; 7 không chia hết cho 2 

Vậy n2 + n + 1 không chia hết cho 2 

11 tháng 10 2018

a/ Gọi 3 số nguyên liên tiếp là a; a+1; a+2.

Theo GT ta có : \(a+\left(a+1\right)+\left(a+2\right)=3a+3\)

=3(a+1) \(⋮3\)(vì \(3⋮3\))

Vậy tổng ba số nguyên liên tiếp là số chia hết cho 3.

b/ Gọi 4 số cần tìm là a ; a+1; a+2 ; a+3

Theo Gt ta có :a+(a+1)+(a+2)+(a+3) = 4a+6

=2(2a+3)\(⋮̸4\)( vì số chia hết cho 2 chưa chắc chia hết cho 4)

Vậy tổng của 4 số nguyên liên tiếp không chia hết cho 4.

11 tháng 10 2018

a) 3 số liên tiếp là: n, n+1, n+2. ( n thuộc N )

Ta có: n + (n+1) + (n+2)= 3n+3 = 3(n+1) chia hết cho 3

b) 4 số liên tiếp: n, n+1, n+2, n+3 (n thuộc N )

Ta có: n+(n+1)+(n+2)+(n+3)= 4n+6 ko chia hết cho 4 vì: 4n chia hết cho 4 nhưng 6 ko chia hết cho 4.

13 tháng 10 2016

THÔI TỰ ĐI MÀ LÀM NHÌN THẤY LÀ ĐÃ GIẬT MÌNH RỒI DÀI DẰNG DẶC AI MÀ LÀM HẾT ĐƯỢC CÁC BẠN NHỈ !

13 tháng 10 2016

1 / 

B = 15 + 17 - 16

B = 16

mà 16 không chia hết cho 12 , nên không cần chứng minh cũng ra

2 / 

 a ) N = 1 đó

 b ) N = 1 đó

cách dễ nhất là cứ cho N = 1 , vì bao nhiêu lần 1 thực hiện phép tính chia thì chắng chia hết cho 1

còn lại tương tự nhé !

mình còn làm violympic nữa

23 tháng 12 2024

HHehe

16 tháng 8 2016

1) Không có số tự nhiên nào nhỏ hơn 1 chia 5 dư 3

2) + Nếu n lẻ thì n + 5 chẵn => n + 5 chia hết cho 2 =>n.(n + 5) chia hết cho 2

+ Nếu n chẵn thì n chia hết cho 2 => n.(n + 5) chia hết cho 2

=> n.(n + 5) luôn chia hết cho 2

3) A = n2 + n + 1

A = n.(n + 1) + 1

a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp =>n.(n + 1) chia hết cho 2 mà 1 không chia hết cho 2

=> A không chia hết cho 2

b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6

=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5

28 tháng 11 2014

câu 1: Ta co 3 số tư nhiên liên tiếp là a; a+1 ; a+2

tổng 3 số tự nhiên liên tiếp là a+ (a+1) + (a+2)= 3a+3 =3(a+1) chia hết cho 3

Câu 2: không đúng

vì 4 số tự nhiên là a; (a+1) ; ( a+2); (a+3) thì tổng 4 số tự nhiên liên tiếp là: a+ (a+1) + ( a+2)+ (a+3)= 4a+6= 2(2a+3)

vì số (2a+3) là số lẻ không chia hết cho 2 nên số 2(2a+3) không chia hết cho 4

Câu 3:

a) Ta có S= 1+3+3​​2+33+........348+349= (1+3)+32(1+3)+......348(1+3)=(1+3)(1+32+.....348)=4(1+32+.....348) chia hết cho 4

b) Từ câu  a ta có S= 4(1+32+33+....348) làm tương tự câu a ta có S= 4.4(1+3+32+...347) =..............= 4.4.4.......(1+3)= 449

Số 4 có mũ là lẻ thì tận cùng là số 4 có số mũ chẵn tận cùng là số 6 

Vậy S có tần cùng là số 4

23 tháng 10 2020

Ta có: a và b chia 5 dư 3

\(\Leftrightarrow\left\{{}\begin{matrix}a=5k+3\left(k\in N\right)\\b=5n+3\left(n\in N\right)\end{matrix}\right.\)

Ta có: c chia 5 dư 2

\(\Leftrightarrow c=5m+2\left(m\in N\right)\)

Ta có: a+c

\(=5k+3+5m+2\)

\(=5k+5m+5\)

\(=5\left(k+m+1\right)⋮5\)

Ta có: b+c

\(=5n+3+5m+2\)

\(=5n+5m+5\)

\(=5\left(n+m+1\right)⋮5\)

Ta có: a-b

\(=5k+3-\left(5n+3\right)\)

\(=5k+3-5n-3\)

\(=5k-5n\)

\(=5\left(k-n\right)⋮5\)