Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: a+b+c=1
<=>(a+b+c)^2=1
<=>ab+bc+ca=0 (1)
mặt khác: áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/a=y/b=z/c=(x+y+z)/(a+b+c)=x+y+z
<=> x=a(x+y+z) ; y=b(x+y+z) ; z=c(x+y+z)
=>xy+yz+zx=ab(x+y+z)^2+bc(x+y+z)^2+ca(x...
<=>xy+yz+zx=(ab+bc+ca)(x+y+z)^2 (2)
từ (1) và (2) ta có đpcm
Giải:
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)
\(\Rightarrow x=ak,y=bk,z=ck\)
Ta có:
\(\left(x+y+z\right)^2=\left(ak+bk+ck\right)^2=\left[k\left(a+b+c\right)\right]^2=\left(k.1\right)^2=k^2\) (1)
\(x^2+y^2+z^2=\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2=a^2.k^2+b^2.k^2+c^2.k^2=\left(a^2+b^2+c^2\right).k^2=1.k^2=k^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\left(đpcm\right)\)
nếu x=0 mà x/a = y/b = z/c thì x=y=z=0 suy ra (x+y+z)^2 = x^2 + y^2 + z^2 (1)
tương tự nếu y=0,z=0 thì (x+y+z)^2 = x^2 + y^2 + z^2 (2)
nếu x,y,z khác 0 thì x/a = y/b = z/c khác 0
đặt x/a = y/b = z/c=k ta có: x/k=a,y/k=b,z/k=c, k khác 0
(a+b+c)^2 = a^2 + b^2 + c^2
(x+y+z)2/k2=x2+y2+z2/k2
(x+y+z)^2 = x^2 + y^2 + z^2 vì k khác 0(3)
từ (1),(2),(3) suy ra đpcm