Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: D.
Vì x 2 + x + 4 > 0 với mọi x nên phương trình (x − 3)( x 2 + x + 4) = 0 chỉ có một nghiệm là x = 3. Do đó, đồ thị của hàm số đã cho chỉ có một giao điểm với trục hoành.
Đáp án: D.
Vì x 2 + x + 4 > 0 với mọi x nên phương trình (x − 3)( x 2 + x + 4) = 0 chỉ có một nghiệm là x = 3. Do đó, đồ thị của hàm số đã cho chỉ có một giao điểm với trục hoành.
Câu 2:
$y'=-3x^2+6x+(m-2)=0$
Để hàm số có 2 điểm cực trị $x_1,x_2$ đồng nghĩa với PT $-3x^2+6x+(m-2)=0$ có 2 nghiệm phân biệt $x_1,x_2$
$\Leftrightarrow \Delta'=9+3(m-2)>0\Leftrightarrow m>-1(1)$
Hai điểm cực trị cùng dương khi:
\(\left\{\begin{matrix} x_1+x_2=2>0\\ x_1x_2=\frac{m-2}{-3}>0\end{matrix}\right.\Leftrightarrow m< 2(2)\)
Từ $(1);(2)\Rightarrow -1< m< 2$
Đáp án C.
Câu 2:
Để đths có 2 điểm cực trị thì trước tiên:
$y'=x^2-2mx+m^2-4=0$ có 2 nghiệm phân biệt $x_1,x_2$
Điều này xảy ra khi $\Delta'=m^2-(m^2-4)>0\Leftrightarrow m\in\mathbb{R}$
Để 2 điểm cực trị của đồ thị $y$ nằm về hai phía của trục tung thì: $x_1x_2< 0$
$\Leftrightarrow m^2-4< 0$
$\Leftrightarrow -2< m< 2$
Đáp án A.
Câu 4:
Do \(f\left(x\right)\) là hàm chẵn \(\Rightarrow f\left(x\right)=f\left(-x\right)\) \(\forall x\)
Xét tích phân:
\(I=\int\limits^0_{-5}f\left(x\right)dx\)
Đặt \(x=-t\Rightarrow dx=-dt\) ; \(\left\{{}\begin{matrix}x=-5\Rightarrow t=5\\x=0\Rightarrow t=0\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^0_5f\left(-t\right)\left(-dt\right)=\int\limits^5_0f\left(-t\right)dt=\int\limits^5_0f\left(t\right)dt=\int\limits^5_0f\left(x\right)dx\)
Vậy:
\(\frac{3}{2}\int\limits^5_{-5}f\left(x\right)dx=\frac{3}{2}\left(\int\limits^0_{-5}f\left(x\right)dx+\int\limits^5_0f\left(x\right)dx\right)=\frac{3}{2}.2\int\limits^5_0f\left(x\right)dx=3.5=15\)
Câu 1:
Gọi O là tâm đáy , G là trọng tâm tam giác đều SAB
Qua O kẻ đường thẳng d vuông góc mặt phẳng (ABCD) (đường thẳng này song song SG)
Trong mặt phẳng (SGO) hay mở rộng là (SHO) với H là trung điểm BC, qua G kẻ đường thẳng song song OH cắt d tại T \(\Rightarrow T\) là tâm mặt cầu ngoại tiếp tứ diện
Ta có \(OT=GH=\frac{1}{3}SH=\frac{1}{3}.\frac{a\sqrt{3}}{2}=\frac{a\sqrt{3}}{6}\)
\(OB=\frac{1}{2}BD=\frac{a\sqrt{2}}{2}\)
\(\Rightarrow tan\widehat{TBD}=\frac{OT}{OB}=\frac{\sqrt{6}}{6}\Rightarrow\widehat{TBD}\approx22^012'\)
Câu 2:
Phương trình đoạn chắn của mặt phẳng (ABC): \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
Do \(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=7\Leftrightarrow\frac{\frac{1}{7}}{a}+\frac{\frac{2}{7}}{b}+\frac{\frac{3}{7}}{c}=1\)
\(\Rightarrow\left(ABC\right)\) luôn đi qua điểm cố định \(D\left(\frac{1}{7};\frac{2}{7};\frac{3}{7}\right)\)
Gọi \(I\left(1;2;3\right)\) là tâm mặt cầu
\(\Rightarrow ID^2=\left(1-\frac{1}{7}\right)^2+\left(2-\frac{2}{7}\right)^2+\left(3-\frac{3}{7}\right)^2=\frac{72}{7}=R^2\)
\(\Rightarrow D\) chính là tiếp điểm của mặt cầu (S) và mặt phẳng (ABC)
\(\Rightarrow ID\perp\left(ABC\right)\) , mà \(\overrightarrow{DI}=\left(\frac{6}{7};\frac{12}{7};\frac{18}{7}\right)=\frac{6}{7}\left(1;2;3\right)\)
\(\Rightarrow\left(ABC\right)\) nhận \(\overrightarrow{n}=\left(1;2;3\right)\) là 1 vtpt
Phương trình (ABC):
\(1\left(x-\frac{1}{7}\right)+2\left(y-\frac{2}{7}\right)+3\left(z-\frac{3}{7}\right)=0\)
\(\Rightarrow\)Giao điểm của (ABC) và các trục tọa độ: \(A\left(2;0;0\right)\) ;\(B\left(0;1;0\right)\); \(C\left(0;0;\frac{2}{3}\right)\)
Thể tích tứ diện: \(V=\frac{1}{3}.1.2.\frac{2}{3}=\frac{4}{9}\)
câu 1 sao không ra đáp án nào vậy bạn , hình như bạn làm sai đâu đó rồi
Trời, đọc xong chỉ việc chọn đáp án mà ko biết chọn luôn?
Đáp án D chứ sao nữa