K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2021

Xét  a^2+b^2+c^2+d^2+e^2-(a+b+c+d+e)

   \(=\) a^2+b^2+c^2+d^2+e^2 -a-b-c-d-e

    \(=\)a(a-1)+b(b-1)+c(c-1)+d(d-1)

Ta có: a, a-1 là 2 số liên tiếp nên tích chúng chi hết cho 2

tương tự b,c,d,e cũng vậy

\(\Rightarrow\) \(\left\{{}\begin{matrix}a\left(a-1\right)⋮2\\b\left(b-1\right)⋮2\\c\left(c-1\right)⋮2\\d\left(d-1\right)⋮2\end{matrix}\right.\Rightarrow\)a(a-1)+b(b-1)+c(c-1)+d(d-1)   \(⋮\)2

\(\Rightarrow\)a^2+b^2+c^2+d^2+e^2-(a+b+c+d+e) \(⋮\)2

mà a^2+b^2+c^2+d^2+e^2 \(⋮\)2

\(\Rightarrow\)a+b+c+d+e \(⋮\)2

mà a,b,c,d,e nguyên dương

\(\Rightarrow\)a+b+c+d+e>2

\(\Rightarrow\)a+b+c+d+e là hợp số

Lưu ý: muốn chứng minh là hợp số phải chứng minh nó chia hết cho 1 số(không phải số nguyên tố)

còn nếu nó chia hết cho 1 số nguyên tố thì phải lớn hơn số nguyên tố đó

nên sau khi c/m a+b+c+d+e \(⋮\)2 , chúng ta phải c/m a+b+c+d+e>2. chứ lở nó bằng hai thì ko phải hợp số

17 tháng 4 2021

Có $a^2+b^2+c^2+d^2+e^2=(a+b)^2+(c+d)^2+e^2-2ab-2cd$

$=(a+b+c+d)^2+e^2 -2.(a+b)(c+d)-2ab-2cd$

$=(a+b+c+d+e)^2-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd$

Mà $a^2+b^2+c^2+d^2+e^2\vdots 2;-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd \vdots 2$ nên $(a+b+c+d+e)^2 \vdots 2$

Suy ra $a+b+c+d+e \vdots 2$

$a;b;c;d;e$ nguyên dương nên $a+b+c+d>2$

suy ra $a+b+c+d+e$ là hợp số

6 tháng 3 2019

\(a^2-a=a.\left(a-1\right)⋮2\)

tương tự b2-b,c2-c,d2-d,e2-e

\(a^2+b^2+c^2+d^2+e^2-\left(a+b+c+d\right)⋮2\text{ mà }a^2+b^2+c^2+d^2+e^2⋮2\)

\(\Rightarrow a+b+c+d⋮2\text{ mà }a+b+c+d\ge4\Rightarrow a+b+c+d\text{ là hợp số}\)

3 tháng 4 2020

sao a.(a-1) chia hết cho 2 đc

29 tháng 3 2019

Xét \(A=a^{2}+b^{2}+c^{2}+d^{2}+e^{2}-a-b-c-d-e=a\left ( a-1 \right )+b\left ( b-1 \right )+c\left ( c-1 \right )+d\left ( d-1 \right )+e\left ( e-1 \right )\)

Mà a , a-1 là 2 số nguyên liên tiếp

\(\Rightarrow a\left ( a-1 \right )\vdots 2\) 

Theo chứng minh trên 

\(\Rightarrow b\left ( b-1 \right ),c\left ( c-1 \right ), d\left ( d-1 \right ), e\left ( e-1 \right )\vdots 2\)

\(\Rightarrow A\vdots 2\) mà \(a^{2}+b^{2}+c^{2}+d^{2}+e^{2}\vdots 2\)

\(\Rightarrow a+b+c+d+e\vdots 2\)

MÀ a,b,c,d,e nguyên dương nên \(a+b+c+d+e > 2\)

\(\Rightarrow a+b+c+d+e\) là hợp số.

 
16 tháng 6 2019

Một họ gồm m phần tử đại diện cho m lớp tương đương nói trên được gọi là một hệ thặng dư đầy đủ modulo m. Nói cách khác, hệ thặng dư đầy đủ modulo m là tập hợp gồm m số nguyên đôi một không đồng dư với nhau theo môđun m.

(x1, x2, …, xm) là hệ thặng dư đầy đủ modulo m ó xi – xj không chia hết cho m với mọi 1 £ i < j £ m.

 

Ví dụ với m = 5 thì (0, 1, 2, 3, 4), (4, 5, 6, 7, 8), (0, 3, 6, 9, 12) là các hệ thặng dư đầy đủ modulo 5.

Từ định nghĩa trên, ta dễ dàng suy ra tính chất đơn giản nhưng rất quan trọng sau:

Tính chất 1: Nếu (x1, x2, …, xm) là một hệ thặng dư đầy đủ modulo m thì

a)     Với a là số nguyên bất kỳ (x1+a, x2+a, …, xm+a) cũng là một hệ thặng dư đầy đủ modulo m.

b)     Nếu (a, m) = 1 thì (ax1, ax2, …, axm) cũng là một hệ thặng dư đầy đủ  modulo m.

Với số nguyên dương m > 1, gọi j(m) là số các số nguyên dương nhỏ hơn m và nguyên tố cùng nhau với m. Khi đó, từ một hệ thặng dư đầy đủ mô-đun m, có đúng j(m) phần tử nguyên tố cùng nhau với m. Ta nói các phần tử này lập thành một hệ thặng dư thu gọn modulo m. Nói cách khác

            (x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m ó (xi, m) = 1 và xi – xj không chia hết cho m với mọi 1 £ i < j £ j(m).

 

Ta có  

Tính chất 2: (x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m và (a, m) = 1 thì

(ax1,a x2, …, axj(m))  cũng là một hệ thặng dư thu gọn modulo m.

 

Định lý Wilson. Số nguyên dương p > 1 là số nguyên tố khi và chỉ khi (p-1)! + 1 chia hết cho p.

 

Chứng minh. Nếu p là hợp số, p = s.t với s, t > 1 thì s £ p-1. Suy ra (p-1)! chia hết cho s, suy ra (p-1)! + 1 không chia hết cho s, từ đó (p-1)! + 1 không chia hết cho p. Vậy nếu (p-1)! + 1 chia hết cho p thì p phải là số nguyên tố.

~Hok tốt`

P/s:Ko chắc

17 tháng 6 2019

\(a< b< c< d< e< f\)

\(\Rightarrow a+c+e< b+d+f\)

\(\Rightarrow2\left(a+c+e\right)< a+b+c+d+e+f\)

\(\Rightarrow\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\)

AH
Akai Haruma
Giáo viên
30 tháng 1 2023

Lời giải:
$a^2+b^2+c^2+d^2=(a+b)^2-2ab+(c+d)^2-2cd$
$=(a+b)^2+(c+d)^2-2ab-2cd$

$=(a+b+c+d)^2-2(a+b)(c+d)-2ab-2cd\vdots 2$

$\Rightarrow (a+b+c+d)^2\vdots 2$

$\Rightarrow a+b+c+d\vdots 2$

Mà $a,b,c,d$ là số nguyên dương nên $a+b+c+d>2$

Vậy $a+b+c+d$ là số chẵn lớn hơn 2, do đó nó là hợp số (đpcm)