K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2018

Ta có : \(\left(a+1\right)^2\ge4a\)\(\left(b+1\right)^2\ge4b\)\(\left(c+1\right)^2\ge4c\)

Các bất đẳng thức này có 2 vế dương nên : 

\(\left[\left(a+1\right)\left(b+1\right)\left(c+1\right)\right]^2\ge64abc=64.1=8^2\)

Vậy \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\left(ĐPCM\right)\)

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

25 tháng 7 2018

\(a.P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Để : \(P\in Z\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\in Z\Leftrightarrow\left(\sqrt{x}+1\right)\in\left\{\pm1;\pm2\right\}\)

+) \(\sqrt{x}+1=1\Leftrightarrow x=0\left(TM\right)\)

+) \(\sqrt{x}+1=-1\Leftrightarrow vô-n^o\)

+) \(\sqrt{x}+1=2\Leftrightarrow x=1\left(KTM\right)\)

+) \(\sqrt{x}+1=-2\Leftrightarrow vô-n^o\)

KL.............

\(b.Q=\dfrac{\sqrt{a}+1}{\sqrt{a}+2}=\dfrac{\sqrt{a}+2-1}{\sqrt{a}+2}=1-\dfrac{1}{\sqrt{a}+2}\)

Để : \(Q\in Z\Leftrightarrow\dfrac{1}{\sqrt{a}+2}\in Z\Leftrightarrow\left(\sqrt{a}+2\right)\in\left\{\pm1\right\}\)

+) \(\sqrt{a}+2=1\Leftrightarrow vô-n^o\)

+) \(\sqrt{a}+2=-1\Leftrightarrow vô-n^o\)

KL............

\(c.A=\dfrac{\sqrt{a}-1}{\sqrt{a}-4}=\dfrac{\sqrt{a}-4+3}{\sqrt{a}-4}=1+\dfrac{3}{\sqrt{a}-4}\)

Để : \(A\in Z\Leftrightarrow\dfrac{3}{\sqrt{a}-4}\in Z\Leftrightarrow\left(\sqrt{a}-4\right)\in\left\{\pm1;\pm3\right\}\)

+) \(\sqrt{a}-4=1\Leftrightarrow a=25\left(TM\right)\)

+) \(\sqrt{a}-4=-1\Leftrightarrow a=9\left(TM\right)\)

+) \(\sqrt{a}-4=3\Leftrightarrow a=49\left(TM\right)\)

+) \(\sqrt{a}-4=-3\Leftrightarrow a=1\left(TM\right)\)

KL............

P/s : Mình thấy đề bài b sai nhé , mẫu phải là \(\sqrt{a}-2\) thì mới phù hợp ĐK đã cho .

26 tháng 5 2020

tao loa

12 tháng 12 2019

\(1=a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow2P=2a^2+2b^2+2c^2=\frac{2}{a+b+c}+2ab+2bc+2ca\)

\(\Rightarrow3P=3a^2+3b^2+3c^2=\frac{2}{a+b+c}+a^2+b^2+c^2+2ab+2bc+2ca\)

\(=\frac{1}{a+b+c}+\frac{1}{a+b+c}+\left(a+b+c\right)^2\ge3\sqrt[3]{\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}=3\)

\(\Rightarrow P\ge1\)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị.

30 tháng 7 2018

mk giải 1 bài lm mẩu nha .

+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)

vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)

vậy giá trị nhỏ nhất của \(A\)\(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)

mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :

30 tháng 7 2018

lộn ! là phương trình bật 2 đối với ẩn là \(\sqrt{x}\) nha :

DƯƠNG PHAN KHÁNH DƯƠNG

Chọn B