Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với mọi x,y>0
Ta có: \(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\)
Tương tự \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\)
\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)
\(\Rightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Lời giải
Theo đề bài thì \(p=\frac{a+b+c}{2}\Rightarrow p-a=\frac{a+b+c}{2}-a=\frac{b+c-a}{2}\)
Tương tự: \(p-b=\frac{c+a-b}{2};p-c=\frac{a+b-c}{2}\)
Ta cần c/m: \(\frac{2}{b+c-a}+\frac{2}{c+a-b}+\frac{2}{a+b-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có: \(VT=\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)+\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)+\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)\)
\(\ge\frac{4}{2c}+\frac{4}{2a}+\frac{4}{2b}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{\left(đpcm\right)}\)
Ta có:\(p-a=\frac{a+b+c}{2}-a=\frac{b+c-a}{2}\Leftrightarrow\frac{1}{p-a}=\frac{2}{b+c-a}\)
Tương tự ta có:
\(\frac{1}{p-b}=\frac{2}{a+c-b}\)
\(\frac{1}{p-c}=\frac{2}{a+b-c}\)
\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}=2\left(\frac{1}{a+c-b}+\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng engel ta có:
\(\frac{1}{b+c-a}=\frac{\left(1+1-1\right)^2}{b+c-a}\ge\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\)
Tương tự,ta có:
\(\frac{1}{a+b-c}\ge\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\)
\(\frac{1}{a+c-b}\ge\frac{1}{a}+\frac{1}{c}-\frac{1}{b}\)
Cộng vế theo vế ta được:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{đpcm}\)
Do p là nửa chu vi tam giác nên \(2p=a+b+c\)
Ta có bổ đề sau: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Áp dụng vào bài toán:
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-a-b}=\frac{4}{c}\)
Tương tự: \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a},\)\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)
\(\Rightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}=4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)(đpcm)
Dấu "=" xảy ra khi a=b=c.
Dễ thấy a,b,c là độ dài của tam giác nên
a + b - c > 0 ; b + c - a > 0 ; c+a-b > 0
Theo Cauchy-Schwarz thì
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra khi a=b=c = 1
Ta có: Vì chu vi của tam giác là 3 nên a + b + c = 3
Xét: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)
Tương tự CM được:
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\) và \(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{2}{a}\)
Cộng vế 3 BĐT trên lại ta được:
\(2VT\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3^2}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra khi: \(a=b=c\)
Áp dụng bđt \(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\)
được : \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{\left(1+1+1\right)^2}{a+b-c+b+c-a+c+a-b}\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
công thức
\(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{a+y+z}\)
chứng minh thế nào
Link https://lazi.vn/edu/exercise/cho-a-b-c-la-do-dai-3-canh-cua-mot-tam-giac-va-p-la-nua-chu-vi-chung-minh-1-p-a-1-p-b-1-p-c-21-a-a-b-1-c