K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

Ta có:

\(\frac{2a^5+3b^5}{ab}\ge5a^3+10b^3-10ab^2\)

\(\Leftrightarrow\left(a-b\right)^4\left(2a+3b\right)\ge0\).Tương tự với 2 cái còn lại được:

\(\frac{2a^5+3b^5}{ab}+\frac{2b^5+3c^5}{cb}+\frac{2c^5+3a^5}{ab}\ge15\left(a^3+b^3+c^3\right)-10\left(ab^2+bc^2+ca^2\right)\)

=>Đpcm (vì ab2+bc2+ca2=3)

Dấu = khi a=b=c=1

11 tháng 7 2016

\(f\left(x\right)=ax^2+bx+c\)

19 tháng 7 2018

\(BDT\Leftrightarrow2a^4b+2b^4c+2c^4a+3ab^4+3bc^4+3ca^4\ge5a^2b^2c+5a^2bc^2+5ab^2c^2\)

Ta chứng minh được \(ab^4+bc^4+ca^4\ge a^2b^2c+a^2bc^2+ab^2c^2\)

\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)

\(VT=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=VP\)

Vậy ta cần chứng minh \(2a^4b+2b^4c+2c^4a+2ab^4+2bc^4+2ca^4\ge4a^2b^2c+4a^2bc^2+4ab^2c^2\)

\(\Leftrightarrow\sum_{cyc}\left(2c^3+bc^2-b^2c+ac^2-a^2c+3ab^2+3a^2b\right)\left(a-b\right)^2\ge0\)

Dấu "=" xảy ra khi \(a=b=c\)

9 tháng 7 2018

sos là giúp đở = cứu ; helps cũng vậy

15 tháng 5 2019

Cân bằng hệ số:

Giả sư: \(2a^2+ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\) (ta đi tìm x ; y)

\(=xa^2+x.2ab+xb^2+ya^2-y.2ab+yb^2\)

\(=\left(x+y\right)a^2+2\left(x-y\right)ab+\left(x+y\right)b^2\)

Đồng nhất hệ số ta được: \(\hept{\begin{cases}x+y=2\\2\left(x-y\right)=1\end{cases}\Leftrightarrow}\hept{\begin{cases}2x+2y=4\\2x-2y=1\end{cases}}\Leftrightarrow4x=5\Leftrightarrow x=\frac{5}{4}\Leftrightarrow y=\frac{3}{4}\)

Do vậy: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\)

Tương tự với hai BĐT còn lại,thay vào,thu gọn và đặt thừa số chung,ta được:

\(VT\ge\sqrt{\frac{5}{4}}.2.\left(a+b+c\right)=\sqrt{\frac{5}{4}}.2.3=3\sqrt{5}\) (đpcm)

Dấu "=" xảy ra khi a = b =c = 1

14 tháng 5 2019

Hoa 

cả

mắt

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Lời giải:

Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.

Áp dụng vào bài:

$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$

$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$

Tương tự:

$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$

Cộng theo vế:

$\Rightarrow \text{VT}\leq a+b+c=3$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

17 tháng 12 2017

đặt \(3^{13579}=m\).

Vì (3;13579)=1 nên (13579;m)=1 (*)

đem m+1 số \(13579;13579^2;...;13579^{m+1}\)chia cho m

Theo nguyên lý Dirichle  trong m+1 số trên có ít nhất 2 số khi chia cho m có cùng số dư

Gọi 2 số đó là \(13579^x\&13579^y\)(tự đk cho x;y)

giả sử x>y

=>13579^x-13579^y chia hết cho m

=>\(13579^y\left(13579^{x-y}-1\right)\)chia hết cho m

mà 13579^y không chia hết cho m nên 13579^x-y  -1 chia hết cho m

=>tồn tại n=x-y thỏa mãn đề bài

17 tháng 12 2017

tại sao 13579^y ko chia hết cho m

19 tháng 5 2022

Áp dụng bđt \(\dfrac{9}{a+b+c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Khi đó \(\dfrac{9.ab}{a+3b+2c}=ab.\dfrac{9}{\left(a+c\right)+\left(c+b\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{c+b}+\dfrac{a}{2}\)

Tương tự và cộng theo vế suy ra \(9A\le\dfrac{3\left(a+b+c\right)}{2}=9< =>A\le1\)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 2