Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $1=a^2+b^2+c^2$ nên:
\(\frac{1}{a^2+b^2}+\frac{1}{b^2+c^2}+\frac{1}{c^2+a^2}=\frac{a^2+b^2+c^2}{a^2+b^2}+\frac{a^2+b^2+c^2}{b^2+c^2}+\frac{a^2+b^2+c^2}{c^2+a^2}\)
\(=3+\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\)
\(\leq 3+\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}\) (theo BĐT AM-GM)
\(=3+\frac{a^3+b^3+c^3}{2abc}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{\frac{1}{3}}\)
a/(b+c) + b/(a+c) + c/(a+b) = a^2/(ab+ac) + b^2/(ba+bc) + c^2/(ac+bc) >=
(a+b+c)^2/(2.(ab+bc+ac) (buhihacopxki dạng phân thức)
>= (3.(ab+bc+ac)/(2(ab+bc+ac) =3/2
a^2/(b^2+c^2) + b^2/(a^2+c^2) + c^2/(a^2+b^2) >= (a+b+c)^2/(2.(a^2+b^2+c^2) (buhihacopxki dạng phân thức)
>= 3(a^2+b^2+c^2) / 2(a^2+b^2+c^2) >=3/2
\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}-\dfrac{3}{2}\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{b+c}-\dfrac{1}{2}\right)+\left(\dfrac{b}{c+a}-\dfrac{1}{2}\right)+\left(\dfrac{c}{a+b}-\dfrac{1}{2}\right)\ge0\)
\(\Leftrightarrow\left(\dfrac{2a-b-c}{2\left(b+c\right)}\right)+\left(\dfrac{2b-a-c}{2\left(a+c\right)}\right)+\left(\dfrac{2c-a-b}{2\left(a+b\right)}\right)\ge0\)
\(\Leftrightarrow\dfrac{a-b+a-c}{2\left(b+c\right)}+\dfrac{b-a+b-c}{2\left(a+c\right)}+\dfrac{c-a+c-b}{2\left(a+b\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(b+c\right)}+\dfrac{a-c}{2\left(b+c\right)}+\dfrac{b-a}{2\left(a+c\right)}+\dfrac{b-c}{2\left(a+c\right)}+\dfrac{c-a}{2\left(a+b\right)}+\dfrac{c-b}{2\left(a+b\right)}\ge0\)\(\Leftrightarrow\left(a-b\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+c\right)}\right]+\left(a-c\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]+\left(b-c\right)\left[\dfrac{1}{2\left(a+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]\ge0\)
ta có: a,b,c là 3 số dương bất kì nên ta giả sử \(a\ge b\ge c\)
\(\Rightarrow a+c\ge b+c\)
\(\Leftrightarrow2\left(a+c\right)\ge2\left(b+c\right)\)
\(\Leftrightarrow\dfrac{1}{2\left(a+c\right)}\le\dfrac{1}{2\left(b+c\right)}\)
\(\Leftrightarrow\dfrac{1}{2\left(a+c\right)}-\dfrac{1}{2\left(b+c\right)}\ge0\)
Mà \(a\ge b\Rightarrow a-b\ge0\)
\(\Rightarrow\left(a-b\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+c\right)}\right]\ge0\left(1\right)\)
Chứng minh tương tự, ta có:
\(\left(a-c\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]\ge0\left(2\right)\)
\(\left(b-c\right)\left[\dfrac{1}{2\left(a+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]\ge0\left(3\right)\)
Cộng từng vế (1);(2);(3) \(\Rightarrow\) luôn đúng
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)
Bài 1:a,b,c ba cạnh tam giác => a,b,c dương
\(\left\{{}\begin{matrix}a+c>b\\a+b>c\\b+c>a\end{matrix}\right.\) ta có: \(\dfrac{x}{y}< \dfrac{x+p}{y+p}\forall_{x,y,p>0\&x< y}\)
\(VT=\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+c}{a+b}+\dfrac{b}{c+a}< \dfrac{a+c+c}{a+b+c}+\dfrac{b+b}{a+b+c}=\)
\(=\dfrac{a+b+c+b+c}{a+b+c}< \dfrac{\left(a+b+c\right)+\left(A+b+c\right)}{a+b+c}< \dfrac{2\left(b+a+c\right)}{a+b+c}=2=VP\)
p/s: đề sao làm vậy:
mình nghi đề phải thế này: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) cách làm đơn giản hơn
Đặt vế trái BĐT cần chứng minh là P
Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ( Tự chứng minh BĐT này ), ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Rightarrow\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\le\dfrac{1}{\dfrac{4}{a+b}}=\dfrac{a+b}{4}\left(1\right)\)
Tương tự: \(\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}\le\dfrac{b+c}{4}\left(2\right)\)
\(\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\le\dfrac{c+a}{4}\left(3\right)\)
Cộng \(\left(1\right),\left(2\right),\left(3\right)\) vế theo vế, ta được:
\(P\le\dfrac{a+b+b+c+c+a}{4}=\dfrac{a+b+c}{2}\)
Dấu ''='' xảy ra khi và chỉ khi a=b=c
2a)
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2a+b+c}=\dfrac{1}{a+b+a+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{1}{a+2b+c}=\dfrac{1}{a+b+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{1}{a+b+2c}=\dfrac{1}{a+c+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{1}{4}\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)+\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)
\(\Rightarrow VT\le\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)
Chứng minh rằng \(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\\\dfrac{1}{b+c}\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\\\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )
Vì \(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Mà \(VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)
\(\Rightarrow\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)( đpcm )
Dấu " = " xảy ra khi \(a=b=c\)
2b)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}1+a^2\ge2\sqrt{a^2}=2a\\1+b^2\ge2\sqrt{b^2}=2b\\1+c^2\ge2\sqrt{c^2}=2c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{1+a^2}\le\dfrac{a}{2a}=\dfrac{1}{2}\\\dfrac{b}{1+b^2}\le\dfrac{b}{2b}=\dfrac{1}{2}\\\dfrac{c}{1+c^2}\le\dfrac{c}{2c}=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
Bài 1)
Nháp : nhìn nhanh ta thấy nên áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Giải
Vì x,y > 0 =) 2x + y > 0 , x + 2y > 0
Áp dụng BĐT cauchy dạng phân thức cho hai bộ số không âm \(\dfrac{1}{2x+y}\)và\(\dfrac{1}{x+2y}\)
\(\Rightarrow\dfrac{1}{x+2y}+\dfrac{1}{2x+y}\ge\dfrac{4}{x+2y+2x+y}=\dfrac{4}{3\left(x+y\right)}\)
\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3\left(x+y\right)}=4\)
Dấu '' = "xảy ra khi và chỉ khi x + 2y = y + 2x (=) x=y
\(VT=a-\dfrac{ab^2}{b^2+1}+b-\dfrac{bc^2}{c^2+1}+c-\dfrac{ca^2}{a^2+1}\)
\(VT=3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2\sqrt{b^2}=2b\\c^2+1\ge2\sqrt{c^2}=2c\\a^2+1\ge2\sqrt{a^2}=2a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab^2}{b^2+1}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\\\dfrac{bc^2}{c^2+1}\le\dfrac{bc^2}{2c}=\dfrac{bc}{2}\\\dfrac{ca^2}{a^2+1}\le\dfrac{ca^2}{2a}=\dfrac{ca}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{ab+bc+ca}{2}\)
\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge3-\dfrac{ab+bc+ca}{2}\) ( 1 )
Theo hệ quả của bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow3\ge ab+bc+ca\)
\(\Rightarrow\dfrac{3}{2}\ge\dfrac{ab+bc+ca}{2}\)
\(\Rightarrow\dfrac{3}{2}\le3-\dfrac{ab+bc+ca}{2}\) ( 2 )
Từ (1) và (2)
\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge\dfrac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)