Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì vai trò bình đẳng của các ẩn \(a,b,c\) là như nhau nên không mất tính tổng quát, ta có thể giả sử:
\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do \(a,b,c\) đôi một khác nhau nên cũng không đồng thời bằng nhau)
Áp dụng bđt \(AM-GM\) cho từng bộ số gồm có các số không âm, ta có:
\(\left(i\right)\) Với \(\frac{1}{\left(a-b\right)^2}>0;\) \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)
\(\Rightarrow\) \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\) \(\left(1\right)\)
\(\left(ii\right)\) Với \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)
\(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)
\(\Rightarrow\) \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\) \(\left(2\right)\)
\(\left(iii\right)\) Với \(\frac{1}{\left(c-a\right)^2}>0;\) \(\frac{c-a}{16}>0\)
\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)
\(\Rightarrow\) \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\) \(\left(3\right)\)
Cộng từng vế ba bất đẳng thức \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) , ta được:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)
nên \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)
Mặt khác, từ \(\left(\alpha\right)\) ta suy ra được: \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)
nên \(a+2\ge c\) hay nói cách khác \(a-c\ge-2\)
Do đó, \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}a=0\\b=1\\c=2\end{cases}}\) (thỏa mãn \(\left(\alpha\right)\) )
Vì vai trò bình đẳng của các ẩn \(a,b,c\) là như nhau nên không mất tính tổng quát, ta có thể giả sử:
\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do \(a,b,c\) đôi một khác nhau nên cũng không đồng thời bằng nhau)
Áp dụng bđt \(AM-GM\) cho từng bộ số gồm có các số không âm, ta có:
\(\left(i\right)\) Với \(\frac{1}{\left(a-b\right)^2}>0;\) \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)
\(\Rightarrow\) \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\) \(\left(1\right)\)
\(\left(ii\right)\) Với \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)
\(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)
\(\Rightarrow\) \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\) \(\left(2\right)\)
\(\left(iii\right)\) Với \(\frac{1}{\left(c-a\right)^2}>0;\) \(\frac{c-a}{16}>0\)
\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)
\(\Rightarrow\) \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\) \(\left(3\right)\)
Cộng từng vế ba bất đẳng thức \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) , ta được:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)
nên \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)
Mặt khác, từ \(\left(\alpha\right)\) ta suy ra được: \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)
nên \(a+2\ge c\) hay nói cách khác \(a-c\ge-2\)
Do đó, \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=0;b=1;c=2\) (thỏa mãn \(\left(\alpha\right)\) )
Giả sử \(c=min\left\{a,b,c\right\}\)
Khi đó ta được: \(ab+bc+ca\ge ab;\frac{1}{\left(b-c\right)^2}\ge\frac{1}{b^2};\frac{1}{\left(c-a\right)^2}\ge\frac{1}{a^2}\)
Do đó ta cần chứng minh \(ab\left(\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}\right)\ge4\)hay \(\frac{ab}{\left(a-b\right)^2}+\frac{\left(a-b\right)^2}{ab}\ge2\)*đúng theo bất đẳng thức Cô - si*
Đẳng thức xảy ra khi \(a^2+b^2=3ab,c=0\)
Giả sử c = min(a,b,c), khi đó ab+bc+ca>=ab; 1/(b-c)^2>=1/b^2; 1/(c-a)^2>=1/a^2. Ta cần chứng minh: ab(1/(a-b)^2 +1/b^2 + 1/a^2 )>=4. Bằng cách biến đổi tương đương ta được: [ab/(a-b)^2 +a/b + b/a]>=4 <=> ab/(a-b)^2 +a/b+b/a-4>=0 <=>ab/(a-b)^2 + (a^2+b^2-4ab)/ab>=0 <=> ab/(a-b)^2 +[(a-b)^2-2ab]/ab>=0 <=> ab/(a-b)^2 +(a-b)^2/ab - 2 >=0 (1).
Đặt k = ab/(a-b)^2>=0 => (a-b)^2 = 1/k >0.
Áp dụng BĐT Cosi cho k và 1/k => k+1/k >=2 căn(k.1/k)=2 => k+1/k-2>=0 => (1) đã được chứng minh.
Vậy (ab+bc+ca)[1/(a-b)^2 + 1/(b-c)^2 + 1/(c-a)^2]>=4.
Dấu bằng xảy ra khi c = 0 và k=1/k => k^2=1 => a^2b^2=(a-b)^4 => (a-b)^2=ab => a^2+b^2-2ab=ab => a^2-3ab+b^2 = 0. Xem đây là PT bậc hai theo a với hệ số theo b. Lập Delta = 9b^2-4b^2 = 5b^2 => a = (3b+bcăn 5)/2 hoặc a = (3b-bcăn 5)/2.
Đặt \(\hept{\begin{cases}\left(b-c\right)\left(1+a\right)^2=m\\\left(c-a\right)\left(1+b\right)^2=n\\\left(a-b\right)\left(1+c\right)^2=p\end{cases}}\)
khi đó pt đã cho có dạng \(\frac{m}{x+a^2}+\frac{n}{x+b^2}+\frac{p}{x+c^2}=0\)
\(\Rightarrow m\left(x+a^2\right)\left(x+b^2\right)+n\left(x+a^2\right)\left(x+c^2\right)+p\left(x+b^2\right)\left(x+c^2\right)=0\)
\(\Rightarrow x^2\left(m+n+p\right)+x\left(m\left(a^2+b^2\right)+p\left(b^2+c^2\right)+n\left(c^2+a^2\right)\right)=0\)
Đến đây biện luận thôi ~~
Tớ làm hơi tắt đấy.
Đặt \(a-b=x;b-c=y;c-a=z\)
\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)
Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)
\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)
\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
Áp dụng bất đẳng thức:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
ta có:
\(A=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{9}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
Đến đâu Cm dưới mẫu <4 nữa là đc
Tích nha
- Giả sử \(2\ge a>b>c\ge0\)
- Áp dụng bđt Cô-si cho 3 số , ta có :
\(\frac{1}{\left(a-b\right)^2}+\left(a-b\right)+\left(a-b\right)\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left(a-b\right).\left(a-b\right)}=3\)
+
\(\frac{1}{\left(b-c\right)^2}+\left(b-c\right)+\left(b-c\right)\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left(b-c\right).\left(b-c\right)}=3\)
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+2\left(a-c\right)\ge6\)
Do đó : \(P\ge\frac{1}{\left(a-c\right)^2}-2\left(a-c\right)+6\)
Do \(2\ge a>b>c\ge0\Rightarrow2\ge a-c>0\)
\(\Rightarrow P\ge\frac{1}{2^2}-2.2+6=\frac{9}{4}\)
Vậy : \(MinP=\frac{9}{4}\Leftrightarrow a=2;b=1;c=0\)và các hoàn vị của nó