K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2022

Ta xét: (a^5 - a) + (b^5 - b) + (c^5 - c)

Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1) 
= a(a - 1)(a + 1)(a² - 4 + 5) 
= a(a - 1)(a + 1)[ (a² - 4) + 5) ] 
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1) 
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1) 
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) 

Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 2, 3, 5 và 5a(a - 1)(a + 1) chia hết cho 5 và 2, 3 hay chia hết cho 2*3*5=30 

=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 30. 

=> a^5 - a chia hết cho 30 

=> (a^5 -a) + (b^5 -b) + (c^5 -c) = (a^5+b^5+c^5) -(a+b+c) chia hết cho 30 (*) 

Do (a+b+c) chia hết cho 30 

(*) => (a^5+b^5+c^5) chia hết cho 30

15 tháng 7 2022

Trả lời:

Ta thấy : a5a=a(a41)=a(a21)(a2+1).a5−a=a(a4−1)=a(a2−1)(a2+1).

=a(a1)(a+1)(a24+5)=a(a−1)(a+1)(a2−4+5)

=a(a1)(a+1)(a24)+5a(a1)(a+1)=a(a−1)(a+1)(a2−4)+5a(a−1)(a+1)

=(a2)(a1)a(a+1)(a+2)+5a(a1)(a+1)=(a−2)(a−1)a(a+1)(a+2)+5a(a−1)(a+1)

Ta có :(a2)(a1)a(a+1)(a+2)(a−2)(a−1)a(a+1)(a+2)là tích 5 số tự nhiên liên tiếp :

(a2)(a1)a(a+1)(a+2)⇒(a−2)(a−1)a(a+1)(a+2)55và cũng 66( cũng là 3 số tự nhiên liên tiếp )

(a2)(a1)a(a+1)(a+2)⇒(a−2)(a−1)a(a+1)(a+2)3030 (1)(1)

Ta lại có : 5555và (a1)a(a+1)(a−1)a(a+1)66

5a(a1)(a+1)⇒5a(a−1)(a+1)3030(2)(2)

Từ ( 1 ) và ( 2 ) (a2)(a1)a(a+1)(a+2)+5a(a1)(a+1)⇒(a−2)(a−1)a(a+1)(a+2)+5a(a−1)(a+1)3030

Hay a5aa5−a3030

Tương tự b5bb5−bvà c5cc5−ccũng chia hết cho 30 

a5+b5+c5(a+b+c)⇒a5+b5+c5−(a+b+c)3030

Mà a+b+ca+b+c3030

a5+b5+c5⇒a5+b5+c53030 (đpcm)

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

1 tháng 12 2018

không thấy e nha bạn

4 tháng 1 2016

Hatsune Miku : Làm đi rồi nói cho

4 tháng 1 2016

hỏi hộ người khác à Vũ Lê Ngọc Liên

22 tháng 3 2021

1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)

\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)

(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c

22 tháng 3 2021

2) Áp dụng kết quả phần 1 ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)

\(\sqrt{a^2-ab+b^2}=\sqrt{b.\frac{a^2-ab+b^2}{b}}=\sqrt{b.\left(\frac{a^2}{b}-a+b\right)}\le\frac{\frac{a^2}{b}-a+2b}{2}\)

tương tự mấy cái trên

11 tháng 12 2016

1) c/m \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

áp dụng BĐT cô shi cho 2 số thực dương ta có:

\(a+b\ge2\sqrt{ab}\);\(b+c\ge2\sqrt{bc}\);\(a+c\ge2\sqrt{ac}\)

cộng vế vs vế:\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

dấu = xảy ra khi a=b=c

vậy...

b)ta có:

\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{3}}>...>\frac{1}{\sqrt{25}}\)\(A>\frac{1}{\sqrt{25}}+\frac{1}{\sqrt{25}}+...+\frac{1}{\sqrt{25}}\)(25 số hạng)

\(A>\frac{25}{\sqrt{25}}=\sqrt{25}=5\)

vậy.....

 

 

 

12 tháng 12 2016

tức là các số 1/(căn)1; 1/(căn)2... thay cho 1/(căn 25)

đề kiểu gì vậy

15 tháng 8 2017

Em ghi vội nó hơi sai

\(\sqrt{2012a+\frac{\left(b-c\right)^2}{2}}+\sqrt{2012b+\frac{\left(c-a\right)^2}{2}}+\sqrt{2012c+\frac{\left(a-b\right)^2}{2}}\le2012\sqrt{2}\)