Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Fix đề: Cho a,b,c không âm. Chứng minh \(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\ge\dfrac{4}{ab+bc+ca}\)
Dự đoán điểm rơi sẽ có 1 số bằng 0.
Giả sử \(c=min\left\{a,b,c\right\}\) ( c là số nhỏ nhất trong 3 số) thì \(c\ge0\)
do đó \(ab+bc+ca\ge ab\) và \(\dfrac{1}{\left(b-c\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c-a\right)^2}=\dfrac{1}{\left(a-c\right)^2}\ge\dfrac{1}{a^2}\)
BDT cần chứng minh tương đương
\(ab\left[\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\ge4\)
\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{a^2+b^2}{ab}\ge4\)
\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{ab}+2\ge4\)
BĐT trên hiển nhiên đúng theo AM-GM.
Do đó ta có đpcm. Dấu = xảy ra khi c=0 , \(\left(a-b\right)^2=a^2b^2\) ( và các hoán vị )
\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)}{a^2c^2+2ab^2c}\)
\(P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)
\(P\ge\dfrac{\left[a^2+b^2+c^2+3abc\right]^2}{\left(ab+bc+ca\right)^2}\)
Do đó ta chỉ cần chứng minh \(\dfrac{a^2+b^2+c^2+3abc}{ab+bc+ca}\ge2\)
Ta có: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)
\(\Leftrightarrow3abc\ge4\left(ab+bc+ca\right)-9\)
\(\Rightarrow\dfrac{a^2+b^2+c^2+3abc}{ab+bc+ca}\ge\dfrac{a^2+b^2+c^2+4\left(ab+bc+ca\right)-9}{ab+bc+ca}\)
\(=\dfrac{\left(a+b+c\right)^2-9+2\left(ab+bc+ca\right)}{ab+bc+ca}=2\) (đpcm)
sai cơ bản rồi bạn ơi : a(a+bc)^2 không bằng dc (a^2+abc)^2
Áp dụng BĐT Cauchy-Schwarz ta có:
\((ab+a+1)^2 \le (a+b+c) \left( a+ a^2b+ \frac 1c \right) = (a+b+c)(a+a^2b+ab)\)
\(\Rightarrow \dfrac{a}{(ab+a+1)^2} \ge \dfrac{a}{(a+b+c)(a+a^2b+ab)}= \dfrac{1}{(a+b+c)(1+ab+b)}\)
Thiết lập các BĐT tương tự rồi cộng theo vế ta có:
\(\sum \dfrac{a}{(ab+a+1)^2} \ge \dfrac{1}{a+b+c} \sum \dfrac{1}{ab+b+1}= \dfrac{1}{a+b+c}\)
c2: Áp dụng BĐT bunyakovsky:
\(\left(a+b+c\right)\left[\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\right]\ge\left(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ca+c+1}\right)^2\)
Xét \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{c}{c\left(a+1+ab\right)}\)
\(=\dfrac{ab+a+1}{ab+a+1}=1\)
do đó \(\left(a+b+c\right).VT\ge1\Leftrightarrow VT\ge\dfrac{1}{a+b+c}\)
dấu = xảy ra khi a=b=c=1
\(M=\dfrac{\left(ab\right)^2}{abc^2\left(a+b\right)}+\dfrac{\left(ac\right)^2}{acb^2\left(a+c\right)}+\dfrac{\left(bc\right)^2}{a^2bc\left(b+c\right)}\)
\(M\ge\dfrac{\left(ab+bc+ca\right)^2}{2abc\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2abc}=\dfrac{\left(a+b+c\right)\left(ab+bc+ca\right)}{6abc}\ge\dfrac{9abc}{6abc}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Chuẩn hóa: a+b+c=3k
\(\Rightarrow\)\(\dfrac{a}{k}+\dfrac{b}{k}+\dfrac{c}{k}=3\)
Đặt (\(\dfrac{a}{k};\dfrac{b}{k};\dfrac{c}{k}\))\(\Rightarrow\left(x;y;z\right)\);x+y+z=3
ĐPCM\(\Leftrightarrow\)\(\sum\dfrac{19y^3-x^3}{xy+5y^2}\le3\left(x+y+z\right)\)
Ta CM BĐT:
\(\dfrac{19y^3-x^3}{xy+5y^2}\le4y-x\Leftrightarrow-\dfrac{\left(y-x\right)^2\left(x+y\right)}{xy+5y^2}\le0\)(đúng)
CMTT\(\Rightarrow\)ĐPCM
Bất đẳng thức sai, chẳng hạn với \(a=b=10^{-4};c=0,5-a-b\).
a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)
\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)
b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)
\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)
tu gia thiet co dc ab+bc+ca=0.Dat ab=x,bc=y,ca=z. Can chung minh x^3+y^3+z^3=3xyz