Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô-si ngược dấu thôi~~
Ta có:\(\sqrt{12a+\left(b-c\right)^2}=\frac{1}{\sqrt{12}}\cdot\sqrt{12\left[12a+\left(b-c\right)^2\right]}\)
\(\le\frac{1}{\sqrt{12}}\cdot\frac{12+12a+\left(b-c\right)^2}{2}\)
Tương tự ta có:
\(K\le\frac{1}{\sqrt{12}}\left(\frac{12+12a+\left(b-c\right)^2}{2}+\frac{12+12b+\left(a-c\right)^2}{2}+\frac{12+12c+\left(a-b\right)^2}{2}\right)\)
\(=\frac{1}{\sqrt{12}}\cdot\frac{36+12\left(a+b+c\right)+2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)}{2}\)
Ta có:\(a^2+b^2+c^2\ge ab+bc+ca\) ( tự cm )
\(\Rightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)
\(\Rightarrow K\le\frac{1}{\sqrt{12}}\cdot36=6\sqrt{3}\)
P/S:Em ko chắc đâu ạ.sợ bị ngược dấu lắm.Nhất là đoạn cuối:(((
\(\sqrt{12a+\left(b-c\right)^2}\le\sqrt{12a+\left(b+c\right)^2}=\sqrt{12a+\left(3-a\right)^2}=a+3\)
:)
\(K\le\Sigma\sqrt{12a+\left(b+c\right)^2}=\Sigma\sqrt{12a+\left(3-a\right)^2}=\Sigma\sqrt{\left(a+3\right)^2}=12\)
dấu "=" xảy ra khi \(a=b=0;c=3\) và các hoán vị
Bài này hay:)
c = min {a,b,c}. Đặt
\(a-c=x;b-c=y\Rightarrow x,y\ge0\) và x + y = a + b - 2c \(=3-3c\le3\)
\(\Rightarrow a-b=x-y;c=\frac{3-x-y}{3}\)
\(a=x+c=x+\frac{3-x-y}{3}=\frac{2x-y+3}{3}\)
\(b=y+c=\frac{2y-x+3}{3}\)
Như vậy: \(K=\sqrt{4\left(2x-y+3\right)+y^2}+\sqrt{4\left(2y-x+3\right)+x^2}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)
\(=\sqrt{y^2-4y+8x+12}+\sqrt{x^2-4x+8y+12}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)
Giờ em đang bận, tối em làm tiếp!
\(12a+\left(b-c\right)^2=4a\left(a+b+c\right)+b^2-2bc+c^2\)
\(=4a^2+b^2+c^2+4ab+4ac+2bc-4bc\)
\(=\left(2a+b+c\right)^2-4bc\le\left(2a+b+c\right)^2\)
\(\Rightarrow\sqrt{12a+\left(b-c\right)^2}\le2a+b+c\)
Tương tự: \(\sqrt{12b+\left(a-c\right)^2}\le a+2b+c\); \(\sqrt{12c+\left(a-b\right)^2}\le a+b+2c\)
Cộng vế với vế:
\(K\le4\left(a+b+c\right)=12\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)
Từ ( 1 ) và ( 2 ) có đpcm
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
Theo BĐT AM-GM ta có:
\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Rightarrow\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\ge\left(a+b+c\right)^2\)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Rightarrow\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge\left(a+b+c\right)^2\left(1\right)\)
Do 2 BĐT trên cùng có dấu "=" khi \(a=b=c\)
Dễ dàng theo Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\left(2\right)\). Giờ cần c/m
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
Nên cũng chỉ cần chỉ ra
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
Mà \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (cmt)
\(\Rightarrow\)\(\left(a+b+c\right)^2\)\(\ge\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
Dễ thấy \(a+b+c\ne0\) suy ra \(a+b+c\ge\)\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
BĐT cuối đúng theo AM-GM (cmt) \((3)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\) ta có ĐPCM
P/s:bài này liếc phát ra luôn mà quanh đi quẩn lại chỉ mấy BĐT cơ bản :D
C/m lại phần đầu
Cần c/m \((a^2+b^2+c^2)(ab+ac+bc)+\sum_{cyc}(a^2-b^2)^2\geq(a^2+b^2+c^2)^2\)
\(\Leftrightarrow \sum_{cyc}(a^4+a^3b+a^3c-4a^2b^2+a^2bc)\geq0\)
\(\Leftrightarrow \sum_{cyc}(a^4-a^3b-a^3c+a^2bc)+2\sum_{cyc}ab(a-b)^2\geq0\)
Đúng theo Schur