Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}b+c+d=7-a\\b^2+b^2+d^2=13-a^2\end{cases}}\)(1)
Ta có:
\(\left(b+c+d\right)^2\le3\left(b^2+c^2+d^2\right)\)
Thế (1) vô ta được
\(\left(7-a\right)^2\le3\left(13-a^2\right)\)
\(\Leftrightarrow1\le a\le\frac{5}{2}\)
\(C=\left(23-x\right)\left(3x+5\right)+13\)
\(=69x+115-3x^2-5x+13\)
\(=-3x^2+64x+128\)
\(=-3\left(x^2-\dfrac{64}{3}x+\dfrac{1024}{9}\right)+\dfrac{1408}{3}\)
\(=-3\left(x-\dfrac{32}{3}\right)^2+\dfrac{1408}{3}\le\dfrac{1408}{3}\)
Vậy \(Max_C=\dfrac{1408}{3}\)
Để \(C=\dfrac{1408}{3}\) thì \(x-\dfrac{32}{3}=0\Rightarrow x=\dfrac{32}{3}\)
d, \(D=\left(2-3x\right)\left(3x+5\right)-7\)
\(=6x+10-9x^2-15x-7\)
\(=-9x^2-9x+3\)
\(=-9\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{21}{4}\)
\(=-9\left(x-\dfrac{1}{2}\right)^2+\dfrac{21}{4}\le\dfrac{21}{4}\)
Vậy \(Max_D=\dfrac{21}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
1.
a) \((a + b + c)^2 + (a - b - c)^2 +( b - c - a) ^2 + (c - a - b)^2 \)
\(= (a + b + c)^2 + (a + b - c)^2 + (a - b - c)^2 + (a - b + c)^2 \)
\(= (a + b)^2 + 2c(a + b) + c^2 + (a + b)^2 - 2c(a + b) + c^2 + (a - b)^2 - 2c(a - b) + c^2 + (a - b)^2 + 2c(a - b) +c^2 \)
\(= 2(a + b)^2 + 2c^2 + 2(a - b)^2 + 2c^2 \)
\(= 2[(a + b)^2 + (a - b)^2] + 4c^2 \)
\(=2(2a^2 + 2b^2) + 4c^2 \)
\(= 4(a^2 + b^2 + c^2)\)
b) Đặt: \(x=a+b; y=c+d; z=a-b; t=c-d \)
Ta được:
\((x+y)^2+(x-y)^2+(z+t)^2+(z-t)^2 \)
\(= (x^2+2xy+y^2)+(x^2-2xy+y^2)+(z^2+2zt+t^2)+(z^2-2zt+t^2) \)
\(= 2x^2+2y^2+2z^2+2t^2 \)
\(= 2(x^2+y^2+z^2+t^2) \)
\(=2.\left[(a+b)^2+(c+d)^2+(a-b)^2+(c-d)^2 \right]\)
\(= 2(a^2+2ab+b^2+c^2+2cd+d^2+a^2-2ab+b^2+c^2-2cd+d^2) \)
\(= 2(2a^2+2b^2+2c^2+2d^2) \)
\(= 4(a^2+b^2+c^2+d^2)\)
a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
<=> \(a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)
<=> \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Tổng 3 số không âm bằng 0 <=> a=b=c=1
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=3ab+3ac+3bc\)
<=> \(a^2-ab+b^2-bc+c^2-ac=0\)
<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tổng 3 số không âm bằng 0 <=> a=b=c
#NguyễnHoàngTiến ơi cảm ơn bạn đã giúp mình nhưng cho mình hỏi left với right trong bài của bạn có nghĩa là gì vậy hả, mình không hiểu lắm.