Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6 :
a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)
c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)
d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)
Bài 7 :
a) \(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Rightarrow10.3^x=3^{34}+3^{36}\)
\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)
\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)
b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)
\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)
\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)
c) Bài C bạn xem lại đề
d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)
\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)
\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)
\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)
\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)
\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)
(1/2)^m = 1/32
mà 1/32 = (1/2)^5 nên m = 5
343/125= (7/5)^n
mà 343/125 = (7/5)^3 nên n=3
a) \(\frac{16}{2^n}=2\)
=> 2.2n = 16
=> 21+n = 24
=> 1 + n = 4
=> n = 4 - 1
=> n = 3
Vậy n = 3
b) \(\frac{\left(-3\right)^n}{81}=-27\)
=> (-3)n = -27.81
=> (-3)n = -33.34
=> (-3)n = (-3)7
=> n = 7
Vậy n = 7
c) 8n : 2n = 4
=> (8 : 2)n = 4
=> 4n = 41
=> n = 1
Vậy n = 1
a) \(9.3^3.\frac{1}{81}.3^2=3^2.3^3.\frac{1}{3^4}.3^2=3^7.\frac{1}{3^4}=3^3\)
b) \(4.2^5:\left(2^3.\frac{1}{16}\right)=2^2.2^5:2^3:\frac{1}{16}=2^7:2^3.16=2^4.2^4=2^8\)
c) \(3^2.2^5.\left(\frac{2}{3}\right)^2=3^2.2^5.\frac{2^2}{3^2}=2^5.2^2=2^7\)
d) \(\left(\frac{1}{3}\right)^2.\frac{1}{3}.9^2=\left(\frac{1}{3}\right)^3.\left(3^2\right)^2=\frac{1^3}{3^3}.3^4=1^3.3=3^1\)
Vì a, b, c, d là các số tự nhiên khác 0, nên a, b, c, d đều lớn hơn hoặc bằng 2.
Giả sử a^nb^nc^nd^n là số nguyên tố, tức là không thể phân tích thành tích của các số tự nhiên khác 1.
Ta có:
a^nb^nc^nd^n = (a^n)(b^n)(c^n)(d^n)
Vì a, b, c, d đều lớn hơn hoặc bằng 2, nên a^n, b^n, c^n, d^n đều lớn hơn hoặc bằng 2.
Vậy, (a^n)(b^n)(c^n)(d^n) là tích của ít nhất 4 số tự nhiên lớn hơn hoặc bằng 2.
Do đó, a^nb^nc^nd^n không thể là số nguyên tố.
Vậy, a^nb^nc^nd^n là hợp số.