Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(\frac{a}{b}< 1\Rightarrow a< b\)
\(\frac{a}{b}< \frac{a+c}{b+c}\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow ab+ac< ab+bc\Leftrightarrow ac< bc\Leftrightarrow a< b\) (đúng với giả thiết)
a/ Ta có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\) ; \(\frac{b}{b+c}< \frac{a+b}{a+b+c}\); \(\frac{c}{c+a}< \frac{b+c}{a+b+c}\)
Cộng vế với vế:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c+a+b+b+c}{a+b+c}=2\)
b/ \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\) ; \(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\) ; \(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
Cộng vế với vế:
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\)
Mặt khác:
\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\) ; \(\frac{b}{b+c+d}< \frac{b+a}{b+c+d+a}\) ...
Bạn tự làm nốt
c/ Hoàn toàn tương tự:
\(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\) làm tương tự 3 cái còn lại
Cộng lại sẽ ra BĐT bên trái
Sau đó \(\frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\) làm tương tự với 3 cái còn lại rồi cộng lại ra BĐT bên phải
Làm tạm một câu rồi đi chơi, lát làm cho.
4)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Đặt vế trái là P
\(\frac{a^3}{b^2}+b+b\ge3\sqrt[3]{\frac{a^3b^2}{b^2}}=3a\)
Tương tự: \(\frac{b^3}{c^2}+2c\ge3b\) ; \(\frac{c^3}{d^2}+2d\ge3c\); \(\frac{d^3}{a^2}+2a\ge3d\)
Cộng vế với vế:
\(P+2\left(a+b+c+d\right)\ge3\left(a+b+c+d\right)\)
\(\Leftrightarrow P\ge a+b+c+d\)
Dấu "=" xảy ra khi \(a=b=c=d\)
Do a,b,c,d > 0 nên \(b+c+d>0,c+d+a>0,d+a+b>0,a+b+c>0\)
Áp dụng BĐT AM - GM ta có :
\(\frac{a}{b+c+b}+\frac{b+c+d}{a}\ge2\sqrt{\frac{a}{b+c+d}.\frac{b+c+d}{a}}=2\)
Tương tự ta có được điều phải chứng minh
Khi đó \(P\ge2+2+2+2=8\)