K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

ĐK: x;y;z\(\ne0\)

a + b + c = => (a + b + c)2 = 1

=> a2 + b2 + c2 + 2(ab + bc + ca) = 1

Theo đề bài lại có: a2 + b2 + c2 = 1

Do đó 2(ab + bc + ca) = 0

<=> ab + bc + ca = 0

Ta có: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)\(\Rightarrow\frac{a^2}{x^2}=\frac{ab}{xy}=\frac{bc}{yz}=\frac{ac}{xz}\)  (*)

+ Nếu xy + yz + xz = 0, ta có đpcm

+ Nếu \(xy+yz+xz\ne0\)

Áp dụng t/c của dãy tỉ số = nhau ta có:

\(\frac{a^2}{x^2}=\frac{ab}{xy}=\frac{bc}{yz}=\frac{ca}{xz}=\frac{ab+bc+ca}{xy+yz+xz}=0\)\(\Rightarrow a=b=c=0\)

=> a + b + c = 0, mâu thuẫn với đề

Vậy ta có đcpm

10 tháng 9 2017

lẽ ra x,y,z>0 chứ sao lại a,b,c>0 :))

Áp dụng bđt Cô-si:\(x^2+yz\ge2\sqrt{x^2.yz}=2x\sqrt{yz}\Leftrightarrow\frac{1}{x^2+yz}\le\frac{1}{2x\sqrt{yz}}\)

tương tự: \(\frac{1}{y^2+xz}\le\frac{1}{2y\sqrt{xz}};\frac{1}{z^2+xy}\le\frac{1}{2z\sqrt{xy}}\)

=>\(\frac{1}{x^2+yz}\)\(+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\le\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{xz}}+\frac{1}{2z\sqrt{xy}}=\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2xyz}\)

Mặt khác theo bđt Cô-si thì: \(\sqrt{xy}\le\frac{x+y}{2};\sqrt{yz}\le\frac{y+z}{2};\sqrt{xz}\le\frac{x+z}{2}\)

=>\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=\frac{2\left(x+y+z\right)}{2}=x+y+z\)

=>​\(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\le\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2xyz}\le\frac{x+y+z}{2xyz}=\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

ta có đpcm.

10 tháng 9 2017

Áp dụng cauchy cho mỗi mẫu số vế trái , có :

\(VT\le\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{xz}}+\frac{1}{2z\sqrt{xy}}=\frac{1}{2}.\left(\frac{1}{x\sqrt{yz}}+\frac{1}{y\sqrt{xz}}+\frac{1}{z\sqrt{xy}}\right)\)

                                         \(=\frac{1}{2}.\left(\frac{\sqrt{yz}}{xyz}+\frac{\sqrt{xz}}{xyz}+\frac{\sqrt{zx}}{xyz}\right)=\frac{1}{2}.\frac{\sqrt{yz}+\sqrt{xz}+\sqrt{xz}}{xyz}\)

Biến đổi vế phải , có :

\(VP=\frac{1}{2}.\left(\frac{z}{xyz}+\frac{x}{xyz}+\frac{y}{xyz}\right)=\frac{1}{2}.\frac{x+y+z}{xyz}\)

Ta có :

\(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

<=> \(2x+2y+2z\ge2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}\) (đúng - Hệ quả của Cauchy, lên mạng sợt là ra )

=> \(\frac{1}{2}.\frac{x+y+z}{xyz}\ge\frac{1}{2}.\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}{xyz}\)

=> \(VP\ge VT\)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

29 tháng 6 2019

\(B=\Sigma\frac{ab}{a^2+b^2-c^2}\)

\(B=\frac{ab}{a^2+\left(b-c\right)\left(b+c\right)}+\frac{bc}{b^2+\left(c-a\right)\left(c+a\right)}+\frac{ac}{c^2+\left(a-b\right)\left(a+b\right)}\)

\(B=\frac{ab}{a^2-a\left(b-c\right)}+\frac{bc}{b^2-b\left(c-a\right)}+\frac{ac}{c^2-c\left(a-b\right)}\)

\(B=\frac{ab}{a\left(a-b+c\right)}+\frac{bc}{b\left(b-c+a\right)}+\frac{ac}{c\left(c-a+b\right)}\)

\(B=\frac{b}{a+b+c-2b}+\frac{c}{a+b+c-2c}+\frac{a}{a+b+c-2a}\)

\(B=\frac{-b}{2b}+\frac{-c}{2c}+\frac{-a}{2a}\)

\(B=\frac{-1}{2}+\frac{-1}{2}+\frac{-1}{2}\)

\(B=\frac{-3}{2}\)

1.a, cho a,b,c và x,y,z là các số khác 0, thỏa mãn đk a+b+c=0, x+y+z=0,\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\). chứng minh rằng: \(a^2x+b^2y+c^2z=0\) b, cho a,b,c là các hằng số và a,b,c≠-1. chứng minh rằng nếu x=by+cz, y=ax+cz, z=ax+by, x+y+z≠0 thì\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\) 2. giả sử \(a_1,b_1,c_1,a_2,b_2,c_2\) là các số khác 0 thỏa mãn các đk: \(\frac{a_1}{a_2}+\frac{b_1}{b_2}+\frac{c_1}{c_2}=0\) và...
Đọc tiếp

1.a, cho a,b,c và x,y,z là các số khác 0, thỏa mãn đk a+b+c=0, x+y+z=0,\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\). chứng minh rằng:

\(a^2x+b^2y+c^2z=0\)

b, cho a,b,c là các hằng số và a,b,c≠-1. chứng minh rằng nếu x=by+cz, y=ax+cz, z=ax+by, x+y+z≠0 thì\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)

2. giả sử \(a_1,b_1,c_1,a_2,b_2,c_2\) là các số khác 0 thỏa mãn các đk: \(\frac{a_1}{a_2}+\frac{b_1}{b_2}+\frac{c_1}{c_2}=0\)\(\frac{a_2}{a_1}+\frac{b_2}{b_1}+\frac{c_2}{c_1}=1\)

cmr \(\frac{a\frac{2}{2}}{a\frac{2}{1}}+\frac{b\frac{2}{2}}{b\frac{2}{1}}+\frac{c\frac{2}{2}}{c\frac{2}{1}}=1\)

3. a, biết x,y,z khác 0 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). tính gt bt

M=\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)

b, biết x,y,z khác 0 và x+y+z=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\). cmr

y(\(x^2-yz\))\(\left(1-xz\right)=x\left(1-yz\right)\left(y^2-xz\right)\)

4. cho x,y,z khác 0 và \(\frac{y^2+z^2-x^2}{2yz}+\frac{z^2+x^2-y^2}{2xz}+\frac{x^2+y^2-z^2}{2xy}=1\)

chứng minh rằng trong 3 phân thức đã cho có 1 phân thức bằng -1 và hai phân thức còn lại đều bằng 1

5
AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Bài 1:

a) Từ đkđb:

$x+y+z=0\Rightarrow x+y=-z; y+z=-x; z+x=-y$

$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\Rightarrow xbc+yac+zab=0$

$a+b+c=0\Rightarrow a=-(b+c)\Rightarrow a^2=(b+c)^2$

$\Rightarrow a^2x=(b+c)^2x$.

Tương tự: $b^2y=(a+c)^2y; c^2z=(a+b)^2z$

Do đó:

$a^2x+b^2y+c^2z=(b+c)^2x+(a+c)^2y+(a+b)^2z=a^2(y+z)+b^2(z+x)+c^2(x+y)+2(xbc+yac+zab)$

$=a^2(-x)+b^2(-y)+c^2(-z)+2.0=-(a^2x+b^2y+c^2z)$

$\Rightarrow 2(a^2x+b^2y+c^2z=0$

$\Rightarrow a^2x+b^2y+c^2z=0$ (đpcm)

b)

\(\left\{\begin{matrix} x=by+cz\\ y=ax+cz\\ z=ax+by\end{matrix}\right.\Rightarrow \frac{x+y+z}{2}=ax+by+cz\)

\(\Rightarrow \left\{\begin{matrix} ax=\frac{x+y+z}{2}-x=\frac{y+z-x}{2}\\ by=\frac{x+y+z}{2}-y=\frac{x+z-y}{2}\\ cz=\frac{x+y+z}{2}-z=\frac{x+y-z}{2}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} a=\frac{y+z-x}{2x}\\ b=\frac{x+z-y}{2y}\\ c=\frac{x+y-z}{2z}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a+1=\frac{y+z+x}{2x}\\ b+1=\frac{x+z+y}{2y}\\ c+1=\frac{x+y+z}{2z}\end{matrix}\right.\)

\(\Rightarrow \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=2\) (đpcm)

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Bài 2:
Đặt $\frac{a_2}{a_1}=x; \frac{b_2}{b_1}=y; \frac{c_2}{c_1}=z$

Khi đó bài toán trở thành: Cho $x,y,z\neq 0$ thỏa mãn \(\left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\\ x+y+z=1\end{matrix}\right.\)

CMR: $x^2+y^2+z^2=1$

-----------------------------------

Thật vậy:

Ta có: \(\left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\\ x+y+z=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xy+yz+xz=0\\ x+y+z=1\end{matrix}\right.\)

Khi đó: $x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=1^2-2.0=1$ (đpcm)

Vậy........

Ta có a+b+c=0

<=> a+b=-c <=>a2+b2-c2=-2ab

   b+c=-a <=> b2+c2-a2=-2bc

  c+a=-b <=> c2+a2-b2=-2ca

Thay vào biểu thức ta có

\(B=\frac{ab}{-2ab}-\frac{bc}{2bc}-\frac{ca}{2ca}=\frac{-3}{2}\)

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)

\(P=\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=\frac{x^3y^3+y^3z^3+x^3z^3}{x^2y^2z^2}\)

Áp dụng nếu a+b+c=0 thì a3+b3+c3=3abc 

Với a=xy, b=yz, c=zx 

Ta có: \(P=\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}=3\)

Vậy P=3