Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(a+b+c=1\Leftrightarrow\left(a+b+c\right)^2=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\)
\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\) (do \(\left(a+b+c\right)^2=a^2+b^2+c^2=1\))
b/ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\dfrac{a}{d}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
=> \(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{c+d+b}\right)^3\) (2)Từ (1) và (2)=>đpcm
a) Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)
=> ad = bc
Ta có : (a + 2c)(b + d)
= a(b + d) + 2c(b + d)
= ab + ad + 2cb + 2cd (1)
Ta có : (a + c)(b + 2d)
= a(b + 2d) + c(b + 2b)
= ab + a2d + cb + c2b
= ab + c2d + ad + c2b (Vì ad = cd) (2)
Từ (1),(2) => (a + 2c)(b + d) = (a + c)(b + 2d) (ĐPCM)
Sửa đề bài : P = \(\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\)
Ta có : \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
=> \(\dfrac{y+z+t}{x}=\dfrac{z+t+x}{y}=\dfrac{t+x+y}{z}=\dfrac{x+y+z}{t}\)
=> \(\dfrac{y+z+t}{x}+1=\dfrac{z+t+x}{y}+1=\dfrac{t+x+y}{z}+1=\dfrac{x+y+z}{t}+1\)=> \(\dfrac{y+z+t+x}{x}=\dfrac{z+t+x+y}{y}=\dfrac{t+x+y+z}{z}=\dfrac{x+y+z+t}{t}\)TH1: x + y + z + t # 0
=> x = y = z = t
Ta có : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)
P = \(\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}\)
P = 1 + 1 + 1 + 1 = 4
TH2 : x + y + z + t = 0
=> x + y = -(z + t)
y + z = -(t + x)
z + t = -(x + y)
t + x = -(y + z)
Ta có : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)
P = \(\dfrac{-\left(z+t\right)}{z+t}=\dfrac{-\left(t+x\right)}{t+x}=\dfrac{-\left(x+y\right)}{x+y}=\dfrac{-\left(y+z\right)}{y+z}\)
P = (-1) + (-1) + (-1) + (-1)
P = -4
Vậy ...
Từ \(\dfrac{x}{y}=\dfrac{9}{7}\)ta có : \(x=\dfrac{9y}{7}\)(1) ;
Từ \(\dfrac{y}{z}=\dfrac{7}{3}\)ta có: \(z=\dfrac{3y}{7}\)(2);
Thay (1) và (2) vào biểu thức trên ta có:
\(\left(\dfrac{9y}{7}\right)^2-\left(\dfrac{9y^2}{7}\right)+\left(\dfrac{3y}{7}\right)^2=27=>\dfrac{81y^2}{49}-\dfrac{63y^2}{49}+\dfrac{9y^2}{49}=27\)
\(=>\dfrac{27y^2}{49}=27=>27y^2=27.49=1323\)
\(=>y^2=1323:27=49=>y=7;-7\)
Lần lượt thay y =7; -7 vào hệ thức ta tìm được:
\(y=7;x=9;z=3\)và \(y=-7;x=-9;z=-3\)
CHÚC BẠN HỌC TỐT...
Ta có :
\(\dfrac{cy-bx}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}=\dfrac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)
\(\Rightarrow\dfrac{cy-bz}{x}=0\) \(\Rightarrow cy=bz\) \(\Rightarrow\) \(\dfrac{b}{y}=\dfrac{c}{z}\left(1\right)\)
\(\Rightarrow\dfrac{az-cx}{y}=0\) \(\Rightarrow az=cx\) \(\Rightarrow\dfrac{a}{x}=\dfrac{c}{z}\left(2\right)\)
Từ (1) và (2) suy ra : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)