K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)

\(=\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{ab^2-b^3-ac^2+bc^2}\)

\(=\frac{\left(a^2b-b^2a\right)+\left(b^2c-a^2c\right)+c^2\left(a-b\right)}{b^2\left(a-b\right)-c^2\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)+c\left(b^2-a^2\right)+c^2\left(a-b\right)}{\left(b^2-c^2\right)\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)

\(=\frac{ab-c\left(a+b\right)+c^2}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{ab-ac+c^2-bc}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{\left(b-c\right)\left(a-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a-b}{b+c}\)

19 tháng 12 2016

Sửa lại: \(\frac{a-c}{b+c}\)

5 tháng 8 2016

Đầu tiên bạn hãy tự phân tích tử số nha, kết quả là:

    \(a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

Ta có: \(a+b+c=3\)

Vậy thay vào biểu thức, ta sẽ được:

    \(S=\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(\Leftrightarrow S=\frac{\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(\Leftrightarrow S=\frac{1}{2}\left(a+b+c\right)\)

\(\Leftrightarrow S=\frac{1}{2}.3\)

\(\Leftrightarrow S=\frac{3}{2}\)

Chúc bạn học giỏi và tíck cho mìk vs nha Đỗ Nguyễn Hiền Thảo!

11 tháng 11 2017

\(\frac{a^3+b^3-c^3+3abc}{\left(a-b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}=\frac{\left(a+b\right)^3-c^3-3ab\left(a+b\right)+3abc}{2a^2+2b^2+2c^2-2ab+2bc+2ac}\)

                                                                     \(=\frac{\left(a+b-c\right)\left[\left(a+b\right)^2+c\left(a+b\right)+c^2\right]-3ab\left(a+b-c\right)}{2a^2+2b^2+2c^2-2ab+2bc+2ac}\)

                                                                     \(=\frac{\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2-3ab\right)}{2\left(a^2+b^2+c^2-ab+bc+ac\right)}\)

                                                                       \(=\frac{a+b-c}{2}\)

17 tháng 11 2021

\(A=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2\left(a^2+b^2+c^2-ab-bc-ca\right)}=\dfrac{a+b+c}{2}=2\)

5 tháng 2 2016

$Ta$Ta $co$co$a^3+b^3+c^3-3abc$a3+b3+c3−3abc

 

NV
8 tháng 1 2021

\(B=\dfrac{a^3+c^3+3ac\left(a+c\right)-b^3-3ac\left(a+c\right)+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{\left(a+c\right)^3-b^3-3ac\left(a+c-b\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{\left(a+c-b\right)\left[\left(a+c\right)^2+b\left(a+c\right)+b^2\right]-3ac\left(a+c-b\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{\left(a+c-b\right)\left(a^2+b^2+c^2+ab+bc-ac\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{-2\left(2a^2+2b^2+2c^2+2ab+2bc-2ca\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{-2\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2\right]}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}=-2\)