K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2018

chia abc

15 tháng 9 2018

Do abc khác 0 nên ta chia cả 2 vế của bđt cho abc. Ta được:

\(\sqrt{\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\left(\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)}\ge1+\sqrt[3]{\left(1+\frac{bc}{a^2}\right)\left(a+\frac{ca}{b^2}\right)\left(1+\frac{ab}{c^2}\right)}\)

\(\Leftrightarrow\sqrt{3+\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}+\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}}\ge1+\sqrt[3]{\left(1+\frac{bc}{a^2}\right)\left(1+\frac{ca}{b^2}\right)\left(1+\frac{ab}{c^2}\right)}\)

ĐẶT: \(x=\frac{bc}{a^2};y=\frac{ca}{b^2};z=\frac{ab}{c^2}\Rightarrow xyz=1\)

KHI ĐÓ TA CẦN CHỨNG MINH:

\(\sqrt{3+x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ge1+\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

\(\Leftrightarrow\sqrt{3+x+y+z+xy+yz+zx}\ge1+\sqrt[3]{2+x+y+z+xy+yz+zx}\)

ĐẶT : \(t=\sqrt[3]{2+x+y+z+xy+yz+zx}\)

ÁP DỤNG BĐT AM-GM TA CÓ:

\(x+y+z+xy+yz+zx\ge6\sqrt[6]{xyz.xy.yz.zx}=6\)        (DO xyz=1)

\(\Rightarrow t\ge\sqrt[3]{2+6}=2\)

VẬY BẤT ĐẲNG THỨC ĐÃ CHO TƯƠNG ĐƯƠNG VỚI:

\(\sqrt{t^3+1}\ge1+t\Leftrightarrow t^3+1\ge t^2+2t+1\Leftrightarrow t^3-t^2-2t\ge0\Leftrightarrow t\left(t+1\right)\left(t-2\right)\ge0\)

ĐÚNG VỚI : \(t\ge2\)

ĐẲNG THỨC XẢY RA KHI VÀ CHỈ KHI a=b=c

\(\Rightarrow DPCM\) 

NV
13 tháng 1

Trước hết theo BĐT Schur bậc 3 ta có:

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)

\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)

Áp dụng (1):

\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

13 tháng 1

Anh giúp em câu này ạ, câu này hơi khó anh ạ, làm chắc cũng lâu, có gì anh để mai cũng được ạ! 

https://hoc24.vn/cau-hoi/cho-hinh-chop-sabcd-co-day-la-hinh-binh-hanh-m-va-p-la-hai-diem-lan-luot-di-dong-tren-ad-va-sc-sao-cho-mamd-pspc-x-x0-mat-phang-a-di-qua-m-va-song-song-voi-sab-cat-hinh-chop-sabcd-t.8753881358034

31 tháng 3 2017

Áp dụng bất đẳng thức Holder ta được:

\(\left(1+a^3\right)\left(1+b^3\right)\left(1+b^3\right)\ge\left(1+ab^2\right)^3\)

\(\left(1+b^3\right)\left(1+c^3\right)\left(1+c^3\right)\ge\left(1+bc^2\right)^3\)

\(\left(1+c^3\right)\left(1+a^3\right)\left(1+a^3\right)\ge\left(1+ca^2\right)^3\)

Nhân từng vế của 3 bất đẳng thức trên ta được:

\(\left(1+a^3\right)\left(1+b^3\right)\left(1+c^3\right)\ge\left(1+ab^2\right)\left(1+bc^2\right)\left(1+ca^2\right)\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

26 tháng 4 2020

\(\Leftrightarrow\left(\Sigma a\right)^4\left(\Sigma a^4b^4\right)\left[\Sigma c^2\left(a^2+b^2\right)^2\right]\ge54^2\left(abc\right)^6\)

Giả sử \(c=\text{min}\left\{a,b,c\right\}\)và đặt \(a=c+u,b=c+v\) thì nhận được một BĐT hiển nhiên :P

26 tháng 4 2020

Theo BĐT AM-GM ta có:

\(c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)\ge3\sqrt[3]{\left(abc\right)^2\left[\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\right]^2}\)

\(\ge3\sqrt[3]{\left(abc\right)^264\left(abc\right)^4}=12\left(abc\right)^2\)

=> \(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(a^2+c^2\right)^2}\ge2\sqrt{3}abc\)

Cũng theo BĐT AM-GM \(\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4\ge3\sqrt[3]{\left(ab\right)^4\left(bc\right)^4\left(ca\right)^4}=3\left(abc\right)^2\sqrt[3]{\left(abc\right)^2}\)

=> \(\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}\ge\sqrt{3}\cdot abc\sqrt[3]{abc}\)và \(\left(a+b+c\right)^2\ge9\sqrt[3]{\left(abc\right)^2}\)

=> \(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)^2}\cdot\left(a+b+c\right)^2\cdot\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}\)

\(\ge2\sqrt{3}\left(abc\right)\cdot\sqrt{3}\left(abc\right)\sqrt[3]{abc}\cdot9\sqrt[3]{\left(abc\right)^2}\ge54\left(abc\right)^3\)

Dấu "=" xảy ra <=> a=b=c

14 tháng 3 2020

\(BĐT\Leftrightarrow\sqrt{\left(a^2b+b^2c+c^2\right)\left(ab^2+bc^2+ca^2\right)}\ge abc\)

\(+\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)

Đặt \(P=\sqrt{\left(a^2b+b^2c+c^2\right)\left(ab^2+bc^2+ca^2\right)}\)

Áp dụng BĐT Bunhiacopski:

\(\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)\ge\left(\text{ Σ}_{cyc}ab\sqrt{ab}\right)^2\)

\(\Rightarrow P\ge ab\sqrt{ab}+bc\sqrt{bc}+ca\sqrt{ca}\)(1)

Lại áp dụng BĐT Bunhiacopski:

\(\left(a^2b+b^2c+c^2a\right)\left(bc^2+ca^2+ab^2\right)\ge\left(3abc\right)^2\)

\(\Rightarrow P\ge3abc\)(2)

Tiếp tục áp dụng BĐT Bunhiacopski:

\(\left(a^2b+b^2c+c^2a\right)\left(ca^2+b^2a+c^2b\right)\ge\left(\text{Σ}_{cyc}a^2\sqrt{bc}\right)^2\)

\(\Rightarrow P\ge a^2\sqrt{bc}+b^2\sqrt{ca}+c^2\sqrt{ab}\)(3)

Từ (1), (2), (3) suy ra \(3P\ge3abc+\left[\text{Σ}_{cyc}\left(a^2\sqrt{bc}+bc\sqrt{bc}\right)\right]\)

Sử dụng một số phép biến đổi và bđt Cô - si cho 3 số , ta được:

\(3P\ge3abc+3\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)

\(\Rightarrow P\ge abc+\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)

hay \(\sqrt{\left(a^2b+b^2c+c^2\right)\left(ab^2+bc^2+ca^2\right)}\)

\(\ge abc+\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)

Dấu "=" khi a = b = c > 0

P/S: Không biết đúng không nữa, chưa check lại

7 tháng 6 2020

ko biết

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh

13 tháng 8 2017

\(P=\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(b+1\right)\left(c+1\right)}+\frac{c^3}{\left(c+1\right)\left(a+1\right)}-1\)

13 tháng 8 2017

ôi trá hình :VVV