Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a;b;c dương:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-\sqrt[3]{abc}.\sqrt[3]{ab.bc.ca}\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\dfrac{1}{3}\left(a+b+c\right).\dfrac{1}{3}\left(ab+bc+ca\right)\)
\(=\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Đặt vế trái BĐT là P, ta có:
\(\dfrac{ab}{1-c^2}=\dfrac{ab}{\left(1-c\right)\left(1+c\right)}=\dfrac{ab}{\left(a+b\right)\left(a+c+b+c\right)}=\dfrac{ab}{\sqrt{a+b}.\sqrt{a+b}\left(a+c+b+c\right)}\)
\(\le\dfrac{ab}{\sqrt[]{2\sqrt[]{ab}}.\sqrt[]{a+b}.2\sqrt[]{\left(a+c\right)\left(b+c\right)}}=\dfrac{\sqrt[4]{\left(ab\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Tương tự:
\(\dfrac{bc}{1-a^2}\le\dfrac{\sqrt[4]{\left(bc\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
\(\dfrac{ca}{1-b^2}\le\dfrac{\sqrt[4]{\left(ca\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Cộng vế:
\(P\le\dfrac{\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Nên ta chỉ cần chứng minh:
\(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\le\dfrac{3}{2\sqrt[]{2}}\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\Leftrightarrow\left(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\right)^2\le\dfrac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Mà \(\dfrac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)\)
Nên ta chỉ cần chứng minh:
\(\left(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\right)^2\le\left(a+b+c\right)\left(ab+bc+ca\right)\)
Thật vậy:
\(\left(\sqrt[4]{ab}.\sqrt[]{ab}+\sqrt[4]{bc}.\sqrt[]{bc}+\sqrt[4]{ca}.\sqrt[]{ca}\right)^2\le\left(\sqrt[]{ab}+\sqrt[]{bc}+\sqrt[]{ca}\right)\left(ab+bc+ca\right)\)
\(\le\left(a+b+c\right)\left(ab+bc+ca\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
BĐT tương đương
\(\dfrac{a+c}{b+c}-\dfrac{a}{b}>0\Leftrightarrow\dfrac{ab+bc-ab-ac}{b\left(b+c\right)}>0\)
\(\Leftrightarrow\dfrac{c\left(b-a\right)}{b\left(b+c\right)}>0\)\(\Leftrightarrow b-a>0\Leftrightarrow b>a\Leftrightarrow\dfrac{a}{b}< 1\)(đúng vì GT)
Giả sử \(x\le y\le z\) do \(xyz\le0\) nên\(x\le0\)
Do \(x^2+y^2+z^2=9\Rightarrow x^2\le9\Rightarrow x\in\left[-3;0\right]\)
Ta có \(yz\le\left(\frac{y+z}{2}\right)^2\le\frac{y^2+z^2}{2}\)
Do đó : \(2\left(x+y+z\right)-xyz=2x+2\left(y+z\right)-xyz\le2x+2\sqrt{2\left(y^2+z^2\right)}-x.\frac{y^2+z^2}{2}\)
\(=2x+2\sqrt{2\left(9-x^2\right)}-\frac{x\left(9-x^2\right)}{2}=\frac{x^3}{2}-\frac{5x}{2}+2\sqrt{2\left(9-x^2\right)}\)
Xét hàm số :
\(f\left(x\right)=\frac{x^3}{2}-\frac{5x}{2}=2\sqrt{2\left(9-x^2\right)}\) với \(x\in\left[-3;0\right]\) \(\Rightarrow f'\left(x\right)=\frac{3x^2}{2}-\frac{5}{2}-\frac{2\sqrt{2}x}{\sqrt{9-x^2}}\)
Xét \(f'\left(x\right)=0\Leftrightarrow\frac{3x^2}{2}-\frac{5}{2}-\frac{2\sqrt{2}x}{\sqrt{9-x^2}}=0\Leftrightarrow\sqrt{9-x^2}\left(5-3x^2\right)=-4\sqrt{2}x\)
\(\Leftrightarrow\left(9-x^2\right)\left(5-3x^2\right)=32x^2\) (với điều kiện \(5-3x^2\ge0\))
\(\Leftrightarrow9x^9-111x^4+327x^2-225=0\)
\(\Leftrightarrow x^2=1;x^2=3;x^2=\frac{25}{3}\)
\(x^2\le\frac{5}{3}\) nên \(x^2=1\Leftrightarrow x=1,x=-1\) (loại)
Ta có \(f\left(-3\right)=-6;f\left(1\right)=10;f\left(0\right)=6\sqrt{2}\) suy ra Max \(f\left(x\right)=f\left(-1\right)=10\)
\(2\left(x+y+z\right)-xyz\le f\left(x\right)\le10\)
Dấu = xảy ra khi x=-1, y=z và \(x^2+y^2+z^2=9\)
\(\Leftrightarrow x=-1;y=z=2\)
Lời giải:
a.
\(|\overrightarrow{MC}|=|\overrightarrow{MA}-\overrightarrow{MB}|=|\overrightarrow{BA|}\)
Tập hợp điểm $M$ thuộc đường tròn tâm $C$ đường bán kính $AB$
b. Gọi $I$ là trung điểm $AB$. Khi đó:
\(|\overrightarrow{MA}+\overrightarrow{MB}|=|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}|\)
\(=|2\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}|=|2\overrightarrow{MI}|=0\)
\(\Leftrightarrow |\overrightarrow{MI}|=0\Leftrightarrow M\equiv I\)
Vậy điểm $M$ là trung điểm của $AB$
c.
Trên tia đối của tia $CA$ lấy $K$ sao cho $KC=\frac{1}{3}CA$
\(|\overrightarrow{MA}|=2|\overrightarrow{MC}|\Leftrightarrow |\overrightarrow{MK}+\overrightarrow{KA}|=2|\overrightarrow{MK}+\overrightarrow{KC}|\)
\(\Leftrightarrow |\overrightarrow{MK}+4\overrightarrow{KC}|=|2\overrightarrow{MK}+2\overrightarrow{KC}|\)
\(\Leftrightarrow (\overrightarrow{MK}+4\overrightarrow{KC})^2=(2\overrightarrow{MK}+2\overrightarrow{KC})^2\)
\(\Leftrightarrow MK^2+16KC^2=4MK^2+4KC^2\)
\(\Leftrightarrow 12KC^2=3MK^2\Leftrightarrow MK=2KC=\frac{2}{3}AC\)
Vậy $M$ thuộc đường tròn tâm $K$ bán kính $\frac{2}{3}AC$
1) Ta c/m BĐT sau:
Với a, b > 0 thì \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì a, b > 0)
Đẳng thức xảy ra \(\Leftrightarrow a=b\)
Như vậy ta có \(\left\{{}\begin{matrix}x^3+y^3\ge xy\left(x+y\right)\\y^3+z^3\ge yz\left(y+z\right)\\z^3+x^3\ge zx\left(z+x\right)\end{matrix}\right.\)
Do đó \(VT\ge\dfrac{\sqrt{xyz+xy\left(x+y\right)}}{xy}+\dfrac{\sqrt{xyz+yz\left(y+z\right)}}{yz}+\dfrac{\sqrt{xyz+zx\left(z+x\right)}}{zx}\)
\(=\dfrac{\sqrt{xy\left(x+y+z\right)}}{xy}+\dfrac{\sqrt{yz\left(x+y+z\right)}}{yz}+\dfrac{\sqrt{zx\left(x+y+z\right)}}{zx}\)
\(=\sqrt{x+y+z}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\)
\(=\sqrt{x+y+z}.\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\)
\(=\sqrt{x+y+z}.\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\ge\sqrt{3\sqrt[3]{xyz}}.3\sqrt[3]{\sqrt{xyz}}=3\sqrt{3}\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z=1\)
1) Lợi dụng BĐT AM-GM cho 3 số dương, ta được:
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\dfrac{\sqrt{3\sqrt[3]{x^3.y^3.1}}}{xy}=\sqrt{\dfrac{3}{xy}}\)
Tương tự:
\(\dfrac{\sqrt{1+y^3+z^3}}{yz}\ge\sqrt{\dfrac{3}{yz}}\)
\(\dfrac{\sqrt{1+x^3+z^3}}{xz}\ge\sqrt{\dfrac{3}{xz}}\)
Cộng từng vế các BĐT trên. ta được:
\(VT\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)
Tiếp tục lợi dụng AM-GM, ta được
\(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\ge3\sqrt[3]{\dfrac{1}{\sqrt{xy}}.\dfrac{1}{\sqrt{yz}}.\dfrac{1}{\sqrt{xz}}}=3\)
Suy ra đpcm. Đẳng thức xảy ra khi x=y=z=1
\(x^2+2y^2+3=x^2+y^2+y^2+1+2\ge2xy+2y+2\)
\(z^2+2x^2+3\ge2zx+2x+2\)
\(y^2+2z^2+3\ge2yz+2z+2\)
Dễ chứng minh được \(\dfrac{1}{xy+y+1}+\dfrac{1}{yz+z+1}+\dfrac{1}{zx+x+1}=1\)
\(\Rightarrow\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{z^2+2x^2+3}+\dfrac{1}{y^2+2z^2+3}\)
\(\le\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{1}{yz+z+1}+\dfrac{1}{zx+x+1}\right)=\dfrac{1}{2}\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(T=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{c}+\frac{1}{a}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\geq \frac{(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2}{2(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})}=\frac{1}{2}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\)
\(\geq \frac{1}{2}.3\sqrt[3]{\frac{1}{abc}}=\frac{3}{2}\) (theo BĐT AM-GM)
Vậy $T_{\min}=\frac{3}{2}$.
Giá trị này đạt tại $a=b=c=1$