Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ques này nhiều ng` hỏi r` thay ab+bc+ca=1 vào rồi phân tích rút gọn
Do ab + bc + ca = 1 nên ta có :
\(a\sqrt{\frac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}=a\sqrt{\frac{\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)}{a^2+ab+ac+bc}}\)
\(=a\sqrt{\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}{\left(a+b\right)\left(a+c\right)}}=a\sqrt{\left(b+c\right)^2}=a\left(b+c\right)=ab+ac\text{ }\left(1\right)\)
Tương tự : \(b\sqrt{\frac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}=ab+bc\) (2)và \(c\sqrt{\frac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}=bc+ac\) (3)
Cộng vế với vế của (1) ; (2) ; (3) lại ta được :
\(a\sqrt{\frac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}+b\sqrt{\frac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}+c\sqrt{\frac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}=2\left(ab+bc+ac\right)=2\)
Ta có:
\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{9-5}{2}=2\)
Suy ra \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
Tương tự, ta áp dụng với hai biến thực dương còn lại, thu được:
\(\hept{\begin{cases}b+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\\c+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\end{cases}}\)
Khi đó, ta nhân vế theo vế đối với ba đẳng thức trên, nhận thấy: \(\left(a+2\right)\left(b+2\right)\left(c+2\right)=\left[\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\right]^2\)
\(\Rightarrow\) \(\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\) (do \(a,b,c>0\) )
nên \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{c}+\sqrt{a}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)
\(=\frac{2\left(\sqrt{ab}+\sqrt{ca}+\sqrt{ca}\right)}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
\(\Rightarrow\) \(đpcm\)
bạn sẽ tính đc \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)
Thay vao đc \(a+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
lm Tương tụ r quy đòng nha bạn
bạn sẽ tính đc \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)
Ấy ,,,vi diệu ko,,,,rồi thay tiếp vào \(a+2=\sqrt{a}^2+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
bạn lm tương tự r quy đồng,,OK??
~ Hóa ra là tình yêu phút chốc, cứ tin rắng ngày mai người sẽ thấy ~
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
\(\sqrt{a}+\sqrt{b}+\sqrt{c}=3< =>\left(a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\right)=9< =>\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\\ \\ \)
Ở đâu có 2 thì thay vào @@
Ta có:
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\left(a+b+c\right)+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(\Rightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{3^2-5}{2}=2\)
Ở đâu có 2 thay bằng \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) là được