Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ab+bc+ca=abc
nên abc-ab-bc-ac=0
Ta có: a+b+c=1
nên a+b+c-1=0
Ta có: abc-ab-bc-ac+a+b+c-1=0
\(\Leftrightarrow\left(abc-ab\right)-\left(bc-b\right)-\left(ac-a\right)+\left(c-1\right)=0\)
\(\Leftrightarrow ab\left(b-1\right)-b\left(c-1\right)-a\left(c-1\right)+\left(c-1\right)=0\)
\(\Leftrightarrow b\left(c-1\right)\left(a-1\right)-\left(c-1\right)\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right)\dfrac{9}{a+b+c}=9\)
Ta có : abc = 1
<=> a = \(\frac{1}{bc}\)
\(b=\frac{1}{ac}\)
\(c=\frac{1}{ab}\)
Ta có : \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(\frac{1}{bc}+abc\right)\left(\frac{1}{ac}+abc\right)\left(\frac{1}{ab}+abc\right)\)
Áp dụng bđt cô si ta có :
\(\frac{1}{bc}+abc\ge2\sqrt{\frac{abc}{bc}}=2\sqrt{a}\)
\(\frac{1}{ac}+abc\ge2\sqrt{b}\)
\(\frac{1}{ab}+abc\ge2\sqrt{c}\)
Nên : \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(\frac{1}{bc}+abc\right)\left(\frac{1}{ac}+abc\right)\left(\frac{1}{ab}+abc\right)\)\(\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8.1=8\)
Vây Pmin = 8 khi a = b = c = 1
Hai ô tô cùng khởi hành 1 lúc đi từ
A đến B dài 240km, vì mỗi giờ
ô tô thứ 1 đi nhanh hơn ô tô thứ 2 là 12km nên nó đến trước ô tô thứ 2 là 1h40'. Tí
nh vận tốc của mỗi ô tô?
ở trên a(a-b)+b(b-c)+c(c-a)+0 suy ra a=b=c
thay vào M=a^3x3-3a^3=3a^2 -3a+5=3a^2+-3a+5
GTNN của M là GTNN của 3a^2-3a+5 là bằng 17/4
Câu hỏi của Trần Thị Thùy Linh 2004 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
\(A=\left(a+\frac{1}{a}-2\right)+\left(b+\frac{1}{b}-2\right)+\left(c+\frac{1}{c}-2\right)-\left(a+b+c\right)+6\)
\(A=\frac{a^2-2a+1}{a}+\frac{b^2-2b+1}{b}+\frac{c^2-2c+1}{c}-3+6\)
\(A=\frac{\left(a-1\right)^2}{a}+\frac{\left(b-1\right)^2}{b}+\frac{\left(c-1\right)^2}{c}+3\) \(\ge3\forall a,b,c>0\)
A = 3 \(\Leftrightarrow a=b=c=1\)
Vậy min A = 3 \(\Leftrightarrow a=b=c=1\)
\(3A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge9\) (bđt AM-GM)
\(\Rightarrow3A\ge9\Leftrightarrow A\ge3\)
\("="\Leftrightarrow a=b=c=1\)