K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2021

Ta có :\(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)=3\)=> \(a+b+c\ge\sqrt{3}\)

\(\frac{a^3}{b^2+1}=\frac{a^3}{b^2+ab+bc+ac}=\frac{a^3}{\left(b+c\right)\left(b+a\right)}\)

Áp dụng bđt cosi ta có:

\(\frac{a^3}{\left(b+a\right)\left(b+c\right)}+\frac{b+a}{8}+\frac{b+c}{8}\ge3\sqrt[3]{\frac{a^3}{8.8}}=\frac{3}{4}a\)

CM tuong tự

=> \(P+2.\left(\frac{b+a}{8}+\frac{b+c}{8}+\frac{a+c}{8}\right)\ge\frac{3}{4}a+\frac{3}{4}b+\frac{3}{4}c\)

=>\(P\ge\frac{a+b+c}{4}\ge\frac{\sqrt{3}}{4}\)

=>\(MinP=\frac{\sqrt{3}}{4}\)xảy ra khi \(a=b=c=\frac{\sqrt{3}}{3}\)

15 tháng 6 2017

$ab+bc+ca=3$. CMR: $\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\geqslant \frac{3}{2}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

3 tháng 2 2019

theo giả thiết => a+b+c=3abc

ta có:

\(P>=\frac{\left(b\sqrt{a}+a\sqrt{c}+c\sqrt{b}\right)^2}{2\left(a+b+c\right)}\)(theo cauchy schawarz)\(=\frac{\left(b\sqrt{a}+c\sqrt{b}+a\sqrt{c}\right)^2}{6abc}\)

=>\(P>=\frac{\left(3\sqrt[3]{abc\sqrt{abc}}\right)^2}{6abc}\)(cô si)=3/2

dấu = xảy ra khi và chỉ khi a=b=c=\(\frac{1}{2}\)

4 tháng 2 2019

sorry mk nhầm xảy ra dấu = <=>a=b=c=1

30 tháng 5 2019

Từ giả thiết và BĐT AM-GM suy ra:\(\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)\(\ge\)3

Ta có:

P\(\ge\)\(\frac{2a^3}{3\left(a^2+b^2\right)}\)+\(\frac{2b^3}{3\left(c^2+b^2\right)}\)+\(\frac{2c^3}{3\left(a^2+c^2\right)}\)

=\(\frac{2}{3}\)(\(\frac{a\left(a^2+b^2\right)-ab^2}{\left(a^2+b^2\right)}\)+\(\frac{b\left(c^2+b^2\right)-bc^2}{\left(c^2+b^2\right)}\)+\(\frac{a\left(a^2+c^2\right)-ca^2}{\left(a^2+c^2\right)}\))

=\(\frac{2}{3}\)(a+b+c-\(\frac{ab^2}{\left(a^2+b^2\right)}\)-\(\frac{bc^2}{\left(c^2+b^2\right)}\)-\(\frac{ca^2}{\left(a^2+c^2\right)}\))

\(\ge\)\(\frac{2}{3}\)(a+b+c-\(\frac{a}{2}\)-\(\frac{b}{2}\)-\(\frac{c}{2}\))

=\(\frac{2}{3}\).\(\frac{a+b+c}{2}\)=\(\frac{a+b+c}{3}\)=\(\frac{\left(a+1\right)+\left(b+1\right)+\left(c+1\right)}{3}\)-1

\(\ge\)\(\frac{3\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}{3}\)-1\(\ge\)2

Vậy:MinP=2 khi a=b=c=2

30 tháng 5 2019

cách này dễ hiểu hơn nè :

Áp dụng BĐT : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

Ta có : \(1\ge\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)

\(\Leftrightarrow1\ge\frac{9}{a+b+c+3}\)\(\Leftrightarrow a+b+c+3\ge9\)\(\Leftrightarrow a+b+c\ge6\)

\(\frac{a^3}{a^2+ab+b^2}=\frac{a\left(a^2+ab+b^2\right)-ab^2-a^2b}{a^2+ab+b^2}=a-\frac{ab^2+a^2b}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3ab}=a-\frac{a+b}{3}\)

Tương tự : \(\frac{b^3}{b^2+bc+c^2}\ge b-\frac{b+c}{3}\)\(\frac{c^3}{c^2+ac+a^2}\ge c-\frac{a+c}{3}\)

Cộng cả 3 vế , ta được : \(P\ge a+b+c-\frac{2\left(a+b+c\right)}{3}=\frac{1}{3}\left(a+b+c\right)\ge\frac{1}{3}.6=2\)

Vậy GTNN của P là 2 \(\Leftrightarrow a=b=c=2\)

13 tháng 9 2017

a)Từ \(a+b+c\ge ab+bc+ca\)

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) *đúng*

Khi \(a=b=c\)

b)Áp dụng BĐT AM-GM ta có: 

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự rồi cộng theo vế :

\(M\ge3-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)

Khi \(a=b=c=1\)

27 tháng 7 2020

\(\left(1+a^3\right)\left(1+b^3\right)\left(1+b^3\right)\ge\left(1+ab^2\right)^3\)

\(\Leftrightarrow\)\(\frac{1+a^3}{1+ab^2}\ge\frac{\left(1+ab^2\right)^2}{\left(1+b^3\right)^2}\)

\(\Rightarrow\)\(3P\ge\Sigma\frac{\left(1+ab^2\right)^2}{\left(1+b^3\right)^2}+2\Sigma\frac{1+a^3}{1+ab^2}\ge9\sqrt[9]{\frac{\Pi\left(1+ab^2\right)^2}{\Pi\left(1+a^3\right)^2}\left(\frac{\Pi\left(1+a^3\right)}{\Pi\left(1+ab^2\right)}\right)^2}=9\)

\(\Rightarrow\)\(P\ge3\)

dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

3 tháng 2 2020

Theo em nghĩ bài này ko thiếu điều kiện đâu cô quản lí ạ !!!

Áp dụng BĐT Bunhiacopxki ta có:

\(\left(ab+1\right)^2\le\left(a^2+1\right)\left(b^2+1\right)\)

Áp dụng BĐT AM-GM, ta có:

\(a^2+1=a.a.1+1\le\frac{a^3+a^3+1}{3}+1=\frac{2.\left(a^3+2\right)}{3}\)

\(b^2+1=b.b.1+1\le\frac{b^3+b^3+1}{3}+1=\frac{2.\left(b^3+2\right)}{3}\)

Do đó:

\(\left(ab+1\right)^2\le\frac{4}{9}\left(a^3+2\right)\left(b^3+2\right)\)

\(\Rightarrow ab+1\le\frac{2}{3}\sqrt{\left(a^3+2\right)\left(b^3+2\right)}\)

\(\Rightarrow\frac{a^3+2}{ab+1}\ge\frac{3}{2}.\sqrt{\frac{a^3+2}{b^3+2}}\) \(\left(1\right)\)

Tương tự, ta có:

\(\frac{b^3+2}{bc+1}\ge\frac{3}{2}.\sqrt{\frac{b^3+2}{c^3+2}}\) \(\left(2\right)\)

\(\frac{c^3+2}{ca+1}\ge\frac{3}{2}.\sqrt{\frac{c^3+2}{a^3+2}}\)  \(\left(3\right)\)

Cộng theo vế của \(\left(1\right)\)\(\left(2\right)\) và \(\left(3\right)\) và áp dụng BĐT AM-GM, ta có:

\(G\ge\frac{3}{2}\left(\sqrt{\frac{a^3+2}{b^3+2}}+\sqrt{\frac{b^3+2}{c^3+2}}+\sqrt{\frac{c^3+2}{a^3+2}}\right)\) \(\ge\frac{3}{2}.3\sqrt[3]{\sqrt{\frac{a^3+2}{b^3+2}}.\sqrt{\frac{b^3+2}{c^3+2}}.\sqrt{\frac{c^3+2}{a^3+2}}}=\frac{9}{2}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)

Vậy: \(G_{min}=\frac{9}{2}\Leftrightarrow a=b=c=1\) 

18 tháng 6 2020

Nếu có thể thì cô Chi check xem nick Đinh Uyển Tình và Đông Phương Lạc có cùng địa chỉ máy tính không ạ??

Bạn Đông Phương Lạc tự đăng tự tl ko bt nhục à