Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a là hằng đẳng thức luôn
A=(2x+4)^2
B khai triển tung tóe ra thì phần sau triệt tiêu hết còn 4(a^2+b^2+c^2)
câu c cảm giác sai đề vì mấy câu này phải là (3x)^ ms ra hdt chứ nhỉ
a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
\(=\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{ab^2-b^3-ac^2+bc^2}\)
\(=\frac{\left(a^2b-b^2a\right)+\left(b^2c-a^2c\right)+c^2\left(a-b\right)}{b^2\left(a-b\right)-c^2\left(a-b\right)}\)
\(=\frac{ab\left(a-b\right)+c\left(b^2-a^2\right)+c^2\left(a-b\right)}{\left(b^2-c^2\right)\left(a-b\right)}\)
\(=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)
\(=\frac{ab-c\left(a+b\right)+c^2}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{ab-ac+c^2-bc}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{\left(b-c\right)\left(a-c\right)}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{a-b}{b+c}\)
\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{15}+1\right)\)
\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(\frac{1}{2}\left(5^{32}+1\right)=\frac{5^{32}+1}{2}\)
a)
Ta có
a chia 5 dư 4
=> a=5k+4 ( k là số tự nhiên )
\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16\)
Vì 25k^2 chia hết cho 5
40k chia hết cho 5
16 chia 5 dư 1
=> đpcm
2) Ta có
\(12=\frac{5^2-1}{2}\)
Thay vào biểu thức ta có
\(P=\frac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)}{2}\)
\(\Rightarrow P=\frac{\left[\left(5^2\right)^2-1^2\right]\left[\left(5^2\right)^2+1^2\right]\left(5^8+1\right)}{2}\)
\(\Rightarrow P=\frac{\left[\left(5^4\right)^2-1^2\right]\left[\left(5^4\right)^2+1^2\right]}{2}\)
\(\Rightarrow P=\frac{5^{16}-1}{2}\)
3)
\(\left(a+b+c\right)^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)
\(=a^3+b^3+c^2+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+cb+c^2\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)
\(B=\left(3x-1\right)^2+\left(5-3x\right)^2+\left(6x-2\right)\left(5-3x\right)\)
\(=\left(3x-1\right)^2+\left(5-3x\right)^2+2.\left(3x-1\right)\left(5-3x\right)\)
\(=\left(3x-1+5-3x\right)^2=4^2=16\)
Lời giải:
\(A=2018^2-2017.2019=2018^2-(2018-1)(2018+1)\)
\(=2018^2-(2018^2-1^2)=1\)
\(B=9^8.2^8-(18^4-1)(18^4+1)\)
\(=(9.2)^8-[(18^4)^2-1^2]\)
\(=18^8-(18^8-1)=1\)
\(C=163^2+74.163+37^2=163^2+2.37.163+37^2\)
\(=(163+37)^2=200^2=40000\)
\(D=\frac{2018^3-1}{2018^2+2019}=\frac{(2018-1)(2018^2+2018+1)}{2018^2+2019}\)
\(=\frac{2017(2018^2+2019)}{2018^2+2019}=2017\)
Sử dụng công thức \((a-b)(a+b)=a^2-b^2\)
\(E=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)
\(=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)
\(=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)
\(=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)
\(=(2^8-1)(2^8+1)(2^{16}+1)-2^{32}\)
\(=(2^{16}-1)(2^{16}+1)-2^{32}\)
\(=(2^{32}-1)-2^{32}=-1\)
a) \(\left(x+y\right)^2-\left(x-y\right)^2=x^2+2xy+y^2-x^2+2xy-y^2=4xy\)
b) \(\left(a+b\right)^3+\left(a-b\right)^3-2a^3=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-2a^3\\ =6ab^2\)
Lời giải:
\(A=(a+b)(a^2+b^2)(a^4+b^4)(a^8+b^8)\)
\(\Rightarrow 2018A=(a-b)(a+b)(a^2+b^2)(a^4+b^4)(a^8+b^8)\)
\(=(a^2-b^2)(a^2+b^2)(a^4+b^4)(a^8+b^8)\)
\(=(a^4-b^4)(a^4+b^4)(a^8+b^8)\)
\(=(a^8-b^8)(a^8+b^8)\)
\(=a^{16}-b^{16}\)
\(\Rightarrow A=\frac{a^{16}-b^{16}}{2018}\)