K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

Dấu chia hết là dấu này \(⋮\) nha bạn

Công thức : (a + b)\(⋮\)\(\Rightarrow\) (a + b .k) \(⋮\)m  ( m\(\in\)N )

16 tháng 10 2019

Ta có: \(\left(a+b\right)⋮2\)

\(\Rightarrow\text{​​}\text{​​}\)\(3\left(a+b\right)⋮2\)

\(\Rightarrow\)\(3a+3b⋮2\)

\(\Rightarrow\)\(2a+a+3b⋮2\)

\(\hept{\begin{cases}2a+a+3b⋮2\\2a⋮2\end{cases}}\)

\(\Rightarrow\)\(a+3b⋮2\)

Vậy......

Hok tốt

AH
Akai Haruma
Giáo viên
9 tháng 6 2024

1/

Nếu $a,b$ cùng tính chất chẵn lẻ thì $a+b$ chẵn

$\Rightarrow ab(a+b)\vdots 2$

Nếu $a,b$ khác tính chất chẵn lẻ thì 1 trong 2 số $a,b$ là số chẵn

$\Rightarrow ab(a+b)\vdots 2$

Vậy tóm lại, $ab(a+b)\vdots 2$ với $a,b$ là số tự nhiên bất kỳ.

 

AH
Akai Haruma
Giáo viên
9 tháng 6 2024

2/

$n^2+n-1=n(n+1)-1$

Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên trong 2 số có 1 số chẵn, 1 số lẻ.

$\Rightarrow n(n+1)\vdots 2$

Mà $1\not\vdots 2$

$\Rightarrow n^2+n-1=n(n+1)-1\not\vdots 2$

Có: a+5b chia hết cho 7

=> 2.(a+5b)\(⋮\) 7

 \(\Leftrightarrow2a+10b⋮7\)

 \(\Rightarrow2a+10-7b\) chia hết cho 7 ( do 7b chia hết cho 7 )

\(\Leftrightarrow2a+3b\)  chia hết cho 7 

=> điều phải chứng minh

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

1.

$4-n\vdots n+1$

$\Rightarrow 5-(n+1)\vdots n+1$

$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$

$\Rightarrow n\in \left\{0; 4\right\}$

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

2.

Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$