K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2015

\(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}=b+a+\frac{2}{a+b}=\left(\frac{a+b}{2}+\frac{2}{a+b}\right)+\frac{a+b}{2}\ge2.\sqrt{\frac{a+b}{2}.\frac{2}{a+b}}+\frac{2\sqrt{ab}}{2}=2+1=3\)

Dấu "=" xảy ra khi a = b và (a + b)= 4 => a = b = 1

27 tháng 7 2017

Ta có

\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{ab^2+b^2}{b^2+1}\ge\left(a+1\right)-\frac{ab^2+b^2}{2b}=\left(a+1\right)-\frac{ab+b}{2}\)   (1)

Tương tự  \(\frac{b+1}{c^2+1}\ge\left(b+1\right)-\frac{bc+c}{2}\)   (2)

và  \(\frac{c+1}{a^2+1}\ge\left(a+1\right)-\frac{ca+a}{2}\)   (3)

Cộng (1), (2), (3) vế theo vế:

\(VT\ge\left(a+b+c+3\right)-\frac{\left(ab+bc+ca\right)+\left(a+b+c\right)}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}=3\)

Đẳng thức xảy ra  \(\Leftrightarrow a=b=c=1\)

13 tháng 12 2018

\(a^3+b^3+1=a^3+b^3+abc\ge ab\left(a+b+c\right)\)

=>  \(\frac{\sqrt{1+a^3+b^3}}{ab}\ge\frac{\sqrt{ab\left(a+b+c\right)}}{ab}=\frac{\sqrt{a+b+c}}{\sqrt{ab}}\)

Tuong tu:  \(\frac{\sqrt{1+b^3+c^3}}{bc}\ge\frac{\sqrt{a+b+c}}{\sqrt{bc}}\)

                    \(\sqrt{1+c^3+a^3}\ge\frac{\sqrt{a+b+c}}{\sqrt{ca}}\)

suy ra:  \(\frac{\sqrt{1+a^3+b^3}}{ab}+\frac{\sqrt{1+b^3+c^3}}{bc}+\frac{\sqrt{1+c^3+a^3}}{ca}\ge\sqrt{a+b+c}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)

\(\ge\sqrt{3\sqrt[3]{abc}}.3\sqrt[3]{\frac{1}{\sqrt{ab}}.\frac{1}{\sqrt{bc}}.\frac{1}{\sqrt{ca}}}=3\sqrt{3}\)  (dpcm)

3 tháng 2 2018

Áp dụng BĐT AM-GM ta có:

\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{ab^2+b^2}{b^2+1}\ge\left(a+1\right)-\frac{ab^2+b^2}{2b}=\left(a+1\right)-\frac{ab+b}{2}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\ge a+b+c+3-\frac{a+b+c+ab+bc+ac}{2}\)

\(\ge a+b+c+3-\frac{a+b+c+\frac{\left(a+b+c\right)^2}{3}}{2}\)

\(\ge3+3-\frac{3+\frac{3^2}{3}}{2}=3\)

\("="\Leftrightarrow a=b=c=1\)

17 tháng 3 2016

Ta có: \(a+1-\frac{a+1}{b^2+1}=\frac{ab^2+b^2}{b^2+1}\le\frac{ab^2+b^2}{2b}=\frac{ab}{2}+\frac{b}{2}\) vì \(b^2+1\ge2b\)

nên \(\frac{a+1}{b^2+1}\ge a+1-\frac{b}{2}-\frac{ab}{2}\) Tương tự: 

Vậy ta có: \(VT\ge a+b+c+3-\frac{a+b+c}{2}-\frac{1}{2}\left(ab+bc+ca\right)\)

Vì \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{9}{3}=3\)

nên \(VT\ge3+\frac{a+b+c}{2}-\frac{1}{2}3=3+\frac{3}{2}-\frac{3}{2}=3=VP\)

NV
19 tháng 3 2019

\(\frac{3}{a+2b}=\frac{3}{a+b+b}\le\frac{3}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{2}{b}\right)\)

Tương tự: \(\frac{3}{b+2c}\le\frac{1}{3}\left(\frac{1}{b}+\frac{2}{c}\right)\) ; \(\frac{3}{c+2a}\le\frac{1}{3}\left(\frac{1}{c}+\frac{2}{a}\right)\)

Cộng vế với vế:

\(3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\le\frac{1}{3}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

3 tháng 2 2020

1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)

\(=ac+bc+c^2+ab\)

\(=a\left(b+c\right)+c\left(b+c\right)\)

\(=\left(b+c\right)\left(a+b\right)\)

CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)

CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}.3\)

\(\Rightarrow P\le\frac{3}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy /...

3 tháng 2 2020

\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)

\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)

Tương tự rồi cộng lại:

\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" xảy ra tại \(a=b=c=1\)

27 tháng 11 2017

Áp dụng BĐT AM-GM ta có: 

\(VT=a^2+b^2+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b\)

\(=1+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b\)

\(=1+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{1}{a}+2a\right)+\left(\frac{1}{b}+2b\right)-\left(a+b\right)\)

\(\ge3+2\sqrt{\frac{1}{a}\cdot2a}+2\sqrt{\frac{1}{b}\cdot2b}-\sqrt{2\left(a^2+b^2\right)}\)

\(\ge3+4\sqrt{2}-\sqrt{2}=3+3\sqrt{2}=3\left(1+\sqrt{2}\right)\)

Khi \(a=b=\frac{1}{\sqrt{2}}\)