Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A không phải là số chính phương nhé!
Vì ta thấy rằng các số được cộng vào A là các số mũ của 3, bắt đầu từ 3 mũ 1 đến 3 mũ 62. Ta có thể viết lại A dưới dạng tổng sau:
A = 1 + 3 + 3 mũ 2 + ... + 3 mũ 61 + 3 mũ 62 = (3 mũ 0) + (3 mũ 1) + (3 mũ 2) + ... + (3 mũ 61) + (3 mũ 62)
Chú ý rằng đây là cấp số nhân với a_1 = 3 mũ 0 = 1 và r = 3.
Do đó, ta có thể sử dụng công thức tổng cấp số nhân để tính tổng:
A = (3 mũ 63 - 1) / (3 - 1) - 3 mũ 0 = 3 mũ 63 / 2 - 1
Giá trị của A là một số chẵn, vì 3 mũ 63 là một số lẻ nên tổng giữa số này và số âm 1 cũng là một số lẻ. Tuy nhiên, số chẵn không phải là số chính phương, vì một số chính phương luôn có dạng 4k hoặc 4k+1 với k là một số nguyên không âm.
1)
a)
b)
2)
Vậy A không phải là số chính phương
Học tốt nha
ta chứng minh \(A=n^2\)
thật vậy
với n=1 , thì \(A=1=1^2\) đúng
ta giả sử đẳng thức đúng tới k ,tức là :
\(1+3+5+..+2k-1=k^2\)
Xét \(1+3+5+..+2k-1+2k+1=k^2+2k+1=\left(k+1\right)^2\)
vậy đẳng thức đúng với k+1
theo nguyên lí quy nạp ta có điều phải chứng minh hay A là số chính phương
Ta thấy \(1009020⋮4\)nên đặt \(1009020=4k\left(k\in N\right)\)
Khi đó: \(A-8=3^{4k}-8\)
\(=\left(3^4\right)^k-8\)
\(=81^k-8=...1-8=...3\)
Số có chữ số tận cùng là 3 không thể là số chính phương nên A - 8 không là số cjính phương
a) Số số hàng trong tổng A là:
\(\frac{\left(2n+1-1\right)}{2}+1=n+1\)
\(A=\frac{\left(2n+1+1\right)\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)
Do n là số tự nhiên nên A là số chính phương.
b) Số số hạng trong tổng B là:
\(\frac{2n-2}{2}+1=n\)
\(B=\frac{\left(2n+2\right).n}{2}=\left(n+1\right)n\)
Vậy số B không thể là số chính phương.