K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

A = 7+7+ 73 +....+ 7100

    = (7+72) + (7+ 74)+.....+(799+7100)

     = 7(1+7) + 73(1+7)+.......+799(1+7)

    = 8(7+72+73+.....+ 799) chia hết cho 8  

30 tháng 11 2016

A = 7 + 72 + 73 + ... + 799 + 7100

A = ( 7 + 72 ) + ( 73 + 74 ) + ... + ( 799 + 7100 )

A = ( 1 + 7 ) . 7 + ( 1 + 7 ) . 73 + ... + ( 1 + 7 ) . 799

A = 8 . 7 + 8 . 73 + ... + 8 . 799

A = 8 . ( 7 + 73 + ... + 799 )

=> A chia hết cho 8 (đpcm)

8 tháng 10 2017

thank bạn nhé

29 tháng 12 2017

1. 5x+27 là bội của x+1 

=> 5x+27 chia hết cho x+1 

=> 5(x+1)+22 chia hết cho x+1 

Mà 5(x+1) chia hết cho x+1

=> 22 chia hết cho x+1 

=> x+1 thuộc Ư(22) 

Tiếp theo bạn tự làm nhé

29 tháng 11 2016

1.

\(A=7+7^2+7^3+...+7^{78}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)

\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)

\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)

\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8

Vậy A chia hết cho 8 (đpcm)

 

 

29 tháng 11 2016

\(A=3+3^2+3^3+...+3^{155}\)

\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)

\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)

\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121

Vậy A chia hết cho 121 (đpcm)

\(A=7^1+7^3+7^5+7^7+...+7^{1997}+7^{1999}\)

\(A=\left(7+7^3\right)+\left(7^5+7^7\right)+...+\left(7^{1997}+7^{1999}\right)\)

\(A=\left(7+7^3\right)+\left[\left(7+7^3\right)\cdot7^4\right]+...+\left[\left(7+7^3\right)\cdot7^{1996}\right]\)

\(A=\left(7+7^3\right)\cdot\left(1+7^4+...+7^{1996}\right)\)

\(A=350\cdot\left(1+7^4+...+7^{1996}\right)\)

Vì \(350⋮35\)nên \(A⋮35\left(đpcm\right)\)

8 tháng 11 2019

phải là :

A= \(7+7^2+7^3+...+7^{99}+7^{100}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{99}+7^{100}\right)\)

\(=7.\left(1+7\right)+7^3.\left(1+7\right)+...+7^{99}.\left(1+7\right)\)

\(=7.8+7^3.8+...+7^{99}.8\\ =8.\left(7+7^3+7^{99}\right)\\ \Rightarrow A⋮8\)

Vậy \(A⋮8\)

8 tháng 11 2019

Thanks bạn nha, mk ghi lộn đề

20 tháng 11 2018

a, 11 + 112 + 113 + ... + 11+ 118

= (11 + 112) + (113 + 114) + ... + (117 + 118)

= 11(1 + 11) + 113(1 + 11) + ... + 117(1 + 11)

= 11.12 + 113.12 + .... + 117.12

= 12(11 + 113 + ... + 117) chia hết cho 12

b, 7 + 7+ 73 + 74

= (7 + 73) + (72 + 74)

= 7(1 + 72) + 72(1 + 72)

= 7.50 + 72.50

= 50(7  + 72) chia hết cho 50

c, 3 + 32 + 33 + 34 + 35 + 36

= (3 + 32 + 33) + (34 + 35 + 36)

= 3(1 + 3 + 32) + 34(1 + 3 + 32)

= 3.13 + 34.13

= 13(3 + 34) chia hết cho 13

23 tháng 11 2016

Có \(A=7^1+7^2+7^3+...+7^{99}+7^{100}=\left(7^1+7^2\right)+\left(7^3+7^4\right)+...\left(7^{99}+7^{100}\right)\)

\(\Leftrightarrow A=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{99}\left(1+7\right)=7.8+7^3.8+...+7^{99}.8=8\left(7+7^3+...+7^{99}\right)\)

Vì \(8\left(7+7^3+...+7^{99}\right)\)chia hết cho 8 nên \(A\)chia hết cho 8 (ĐPCM)

  __cho_mình_nha_chúc_bạn_học _giỏi__ 

27 tháng 11 2016

Ta có :

(+) A chia hết cho 7 vì mọi số hạng của A đều chia hết cho 7 (1)

(+) \(A=7\left(1+7^2\right)+7^5\left(1+7^2\right)+....+7^{2014}\left(1+7^2\right)\)

\(\Leftrightarrow A=7.50+7^5.50+....+7^{2014}.50\)

<=> A chia hết cho 5 (2)

Mà (5;7)=1 (3)

Từ (1) ; (2) và 3

=> A chia hết cho 5.7 = 35