K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
10 tháng 8 2020
Bg
Ta có: A = \(\frac{6n+42}{6n}\)(n thuộc Z, n \(\ne\)0)
Để A là số nguyên thì 6n + 42 \(⋮\)6n
Vì 6n + 42 \(⋮\)6n và 6n \(⋮\)6n
=> 42 \(⋮\)6n
=> 42 ÷ 6 \(⋮\)n
=> 7 \(⋮\)n
=> n thuộc Ư(7)
=> n = {1; -1; 7; -7}
Vậy n = {1; -1; 7; -7} thì A là số nguyên.
BL
1
MN
25 tháng 4 2016
\(A=\frac{6n+42}{6n}=\frac{6n}{6n}+\frac{42}{6n}=1+\frac{7}{n}\)
Để \(A\in Z\)=> \(\Rightarrow7\) chia hết cho \(n\) \(\Rightarrow n\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)
LN
2
R
1
30 tháng 3 2016
Để A là số nguyên thì 42 chia hết cho 6n \(\Rightarrow\)6n\(\in\)Ư(42)
Sau đó bạn tư lam nhé
để A là số nguyên thì 6n + 42 phải chia hết cho 6n
ta có: 6n + 42 chia hết cho 6n
mà 6n đã chia hết cho 6n nên 42 phải chia hết cho 6n.
vậy ta xét bảng giá trị:
VẬY n = 7;1;-7;-1
MỆT QUÁ