K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

Bạn alibaba nguyễn sai rồi nên mình sửa lại rồi bạn xem nhé :

Lời giải :

Ta có : \(331\equiv1\left(mod15\right)\)

\(\Rightarrow331^{332}\equiv1^{332}\equiv1\left(mod15\right)\left(1\right)\)

Ta có : \(2^4\equiv1\left(mod15\right)\)

\(\Rightarrow2^{333}=\left(2^4\right)^{83}.2\equiv2\left(mod15\right)\)

\(\Rightarrow332^{333}\equiv2^{333}\equiv2\left(mod15\right)\left(2\right)\)

Ta có : \(3^5\equiv3\left(mod15\right)\)

\(\Rightarrow3^{334}=3^{5.66}.3^4\equiv3^{66}.3^4\equiv3^{70}\equiv\left(3^5\right)^{14}\equiv3^{14}\equiv\left(3^5\right)^2.3^4\equiv3^2.3^4\equiv3^6\equiv9\left(mod15\right)\)

\(\Rightarrow333^{334}\equiv3^{334}\equiv9\left(mod15\right)\left(3\right)\)

Từ ( 1 ) , ( 2 ) , ( 3 ) suy ra : \(A\equiv\left(1+2+9\right)\equiv12\left(mod15\right)\)

Vậy A chia cho 15 dư 12

22 tháng 9 2017

A = (tự chép lại đề)

\(\Leftrightarrow A=\left(330+1\right)^{332}+\left(333-1\right)^{333}+\left(332+1\right)^{334}\)

\(\Leftrightarrow A=\left(330+1+333-1+332+1\right)+\left(x\right)^{332+333+334}\)

\(\Rightarrow A=996\)

\(\Rightarrow A\)chia 15 dư : \(996:15=66\) dư 6

=> A chia 15 dư 6

7 tháng 8 2016

A=(300 +1)^332 + (333-1)^333 +3^334.11^334

A=331^332-1^332 + 332^333 +1^333 +333^334

A=330(330^331 +330^330+...+1) +333(333^332 -333^331 +...-1) +333^334 chia het cho 3

A=331^332-1^332 +332^333 -2^333 + 333^334 +2^334 +2^333 -2.2^333 +1
A=330(330^331+...+1)+ 330(332^331 +...+2^331) +335 (333^333 -335^332.2+......-2^333) -2.(1+2^332) +3

A=..... -2(5(4^167 -4^156 +....-1)) +3

=> A chia 5 du 3

25 tháng 7 2015

l-i-k-e cho mình, mình sẽ làm cho

14 tháng 12 2017

45 nha bạn kick mình nha

18 tháng 8 2016

1 ) Ta có : \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

             \(2^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì : \(8^{111}< 9^{111}\)

\(\Rightarrow2^{332}< 3^{223}\)

2 ) Ta có : \(\left(222^3\right)^{111}=\left(2.111\right)^3=8.111^3\)

                  \(3^{222}=\left(333^2\right)^{111}=\left(3.111\right)^2=9.111^2\)

Vì : \(8.111^2< 9.111^2\)

\(\Leftrightarrow2^{333}< 3^{222}\)

18 tháng 8 2016

1. Ta có:

\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) nên \(2^{332}< 8^{111}< 9^{111}< 3^{223}\Rightarrow2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

2. Ta có:

\(2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) nên \(2^{333}< 3^{222}\)

Vậy \(2^{333}< 3^{222}\)

 

18 tháng 1 2021

a)

Ta có: \(222^{333}=\left(222^3\right)^{111}\equiv1^{111}=1\left(mod13\right)\)

\(\Rightarrow222^{333}+333^{222}\equiv1+333^{222}=1+\left(333^2\right)^{111}\)

\(\equiv1+12^{111}\equiv1+12^{110}\cdot12\equiv1+\left(12^2\right)^{55}\cdot12\)

\(\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $222^{333}+333^{222}$ chia hết cho $13.$

b) Ta có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv1^{35}\equiv1\) (mod13)

\(\Rightarrow3^{105}+4^{105}\equiv1+4^{105}\equiv1+\left(4^3\right)^{35}\)

\(\equiv1+12^{35}\equiv1+\left(12^2\right)^{17}\cdot12\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $3^{105}+4^{105}$ chia hết cho $13.$

Lại có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv5^{35}\equiv\left(5^5\right)^7\equiv1\left(mod11\right)\)

\(4^{105}\equiv\left(4^3\right)^{35}\equiv9^{35}\equiv\left(9^5\right)^7\equiv1\left(mod11\right)\)

Từ đây:\(3^{105}+4^{105}\equiv1+1\equiv2\left(mod11\right)\)

Vậy $3^{105}+4^{105}$ không chia hết cho $11.$

P/s: Rất lâu rồi không giải, không chắc.