\(32^2\)\(+2^6\)\(-32\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2017

Đề sai: \(A=32^2+2^6-32\)

                \(=32^2+32-32\)

                \(=32^2\)không chia hết cho 33

18 tháng 11 2017

Ta có:

A= 322+26-32 = 322+64-32  

A= 322+32

A= 32.(32+1)= 32.33 chia hết cho 33

Mà A = 32.33

=> A chia hết cho 33 (đpcm)

Vậy A chia hết cho 33

30 tháng 6 2017

Bài 1 :

a) A = \(8^2\) . \(32^4\) = \(\)(2\(^3\))\(^2\) . ( \(2^5\))\(^4\) = 2\(^6\) . 2\(^{20}\) = 2\(^{26}\)

b) B = 27\(^3\) . 9\(^4\) . 243 = ( \(3^3\))\(^3\) . ( \(3^2\) )\(^4\) . 3\(^5\) = 3\(^9\) . \(3^8\) . 3\(^5\) = 3\(^{22}\)

30 tháng 6 2017

Bài 2 : So sánh

a) A = 27\(^5\) và B =2433

Ta có : 27\(^5\) =(3\(^3\))\(^5\) = 3\(^8\) = 6561

Vì 6561 > 2433 nên A > B .

b) A = 2300 và B = 3\(^{200}\)

Ta có : B = \(3^{200}\) = 3\(^8\) . 3\(^{192}\) = 6561 . 3\(^{192}\)

Vậy chắc chắn rằng B > A .

1 tháng 11 2021

Ta có : A = 2 + 22 + 23 + 24 + .. + 259 + 260

= (2 + 22) + (23 + 24) + .. + (259 + 260)

= 2(2 + 1) + 23(2 + 1) + ... + 259(2 + 1) 

= (2 + 1)(2 + 23 + ... + 259) = 3(2 + 23 + ... + 259\(⋮\)3

1 tháng 11 2021

giup minh voi

28 tháng 6 2019

#)Giải :

a) 36 chia hết cho \(x-1\)

\(\Rightarrow x-1\inƯ\left(36\right)=\left\{1;2;3;6;9;12;18;36\right\}\)

\(\Rightarrow x\in\left\{2;3;4;7;10;13;19;36\right\}\)

b) \(x-1\)là ước của 32

\(\Rightarrow x-1\in\left\{1;2;4;8;16;32\right\}\)

\(\Rightarrow x\in\left\{2;3;5;9;17;33\right\}\)

c) 45 là bộ của \(x-2\)

\(\Rightarrow x-2\inƯ\left(45\right)=\left\{1;3;5;9;15;45\right\}\)

\(\Rightarrow x\in\left\{3;5;7;11;17;47\right\}\)

28 tháng 6 2019

x=3;5

27 tháng 6 2018

c) \(\dfrac{x+1}{35}+\dfrac{x+2}{34}+\dfrac{x+3}{33}=\dfrac{x+4}{32}+\dfrac{x+5}{31}+\dfrac{x+6}{30}\)

\(\Rightarrow\dfrac{x+1}{35}+1+\dfrac{x+2}{34}+1+\dfrac{x+3}{33}+1=\dfrac{x+4}{32}+1+\dfrac{x+5}{31}+1+\dfrac{x+6}{30}+1\)

\(\Rightarrow\dfrac{x+1+35}{35}+\dfrac{x+2+34}{34}+\dfrac{x+3+33}{33}=\dfrac{x+4+32}{32}+\dfrac{x+5+31}{31}+\dfrac{x+6+30}{30}\)

\(\Rightarrow\dfrac{x+36}{35}+\dfrac{x+36}{34}+\dfrac{x+36}{33}=\dfrac{x+36}{32}+\dfrac{x+36}{31}+\dfrac{x+36}{30}\)

\(\Rightarrow\dfrac{x+36}{35}+\dfrac{x+36}{34}+\dfrac{x+36}{33}-\dfrac{x+36}{32}-\dfrac{x+36}{31}-\dfrac{x+36}{30}=0\)

\(\Rightarrow\left(x+36\right)\left(\dfrac{1}{35}+\dfrac{1}{34}+\dfrac{1}{33}+\dfrac{1}{32}+\dfrac{1}{31}+\dfrac{1}{30}\right)=0\)

\(\Rightarrow x+36=0\left(\text{vì }\dfrac{1}{35}+\dfrac{1}{34}+\dfrac{1}{33}+\dfrac{1}{32}+\dfrac{1}{31}+\dfrac{1}{30}\ne0\right)\)

\(\Rightarrow x=-36\)

Vậy ...

27 tháng 6 2018

a/ Ta có: \(-4\dfrac{3}{5}.2\dfrac{4}{3}\le x\le-2\dfrac{3}{5}:1\dfrac{6}{15}\)

\(\Rightarrow\dfrac{-23}{5}.\dfrac{10}{3}\le x\le\dfrac{-13}{5}:\dfrac{21}{15}\)

\(\Rightarrow\dfrac{-46}{3}\le x\le\dfrac{-13}{5}.\dfrac{15}{21}\)

\(\Rightarrow\dfrac{-46}{3}\le x\le\dfrac{-13}{7}\)

\(\Rightarrow-15,\left(3\right)\le x\le-1,\left(857142\right)\)

Vì x \(\in\) Z nên x \(\in\left\{-1;-2;-3;...;-15\right\}\)

Chúc bạn học tốt!!!okokok

27 tháng 6 2017

\(B=4+4^2+4^3+.....+4^{2016}\)

\(4B=4\left(4+4^2+4^3+.....+4^{2016}\right)\)

\(4B=4^2+4^3+4^4+.....+4^{2017}\)

\(4B-B=\left(4^2+4^3+4^4+......+4^{2017}\right)-\left(4+4^2+4^3+.....+4^{2016}\right)\)

\(3B=4^{2017}-4\)

\(B=\dfrac{4^{2017}-4}{3}\)

13 tháng 6 2018

Ta có:\(\dfrac{31}{2}\).\(\dfrac{32}{2}\).\(\dfrac{33}{2}\).....\(\dfrac{60}{2}\)

=\(\dfrac{31.32.33.....60}{2^{30}}\)

=\(\dfrac{\left(1.2.3.....30\right).\left(31.32.33.....60\right)}{\left(1.2.3.....30\right).2^{30}}\)

=\(\dfrac{1.2.3.....60}{2.4.6.....60}\)

=\(\dfrac{\left(1.3.5.....59\right).\left(2.4.6.....60\right)}{2.4.6.....60}\)

=1.3.5.....59

Vậy (đpcm)

21 tháng 11 2017

\(A=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

Ta có: \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}< \frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\)

Do đó \(A< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)

Vậy \(A< \frac{4}{5}\)

21 tháng 11 2017

<br class="Apple-interchange-newline"><div id="inner-editor"></div>141 +142 +...+150 <140 +140 +...+140 =1040 =14 

151 +152 +...+160 <150 +150 +...+150 =1050 =15 

Do đó A<13 +14 +15 =4760 <4860 =45 

Vậy A<45