K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

chu so tan cung bang 10

15 tháng 12 2016

tự trả lời được sao hỏi lên đây làm gì

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Lời giải:

$A=1+3+3^2+3^3+....+3^{30}$

$3A=3+3^2+3^3+....+3^{31}$

$3A-A=(3+3^2+3^3+...+3^{31})-(1+3+...+3^{30})$

$2A=3^{31}-1$

$A=\frac{3^{31}-1}{2}=\frac{3.3^{30}-1}{2}$

$=\frac{3.9^{15}-1}{2}$

Ta thấy: Đối với $9^n$ thì $n$ chẵn số này sẽ có tận cùng là $1$, $n$ lẻ sẽ có tận cùng là $9$

Vậy $9^{15}$ tận cùng là $9$

$\Rightarrow 3.9^{15}$ tận cùng là $7$

$\Rightarrow 3.9^{15}-1$ tận cùng là $6$

$\Rightarrow A=\frac{3.9^{15}-1}{2}$ tận cùng là $3$ hoặc $8$

Do đó $A$ không thể là scp.

 

số tận cùng của 74^30 là (6)
số tận cùng của 49^31 là (9)
số tận cùng của 87^32 là (1);
số tận cùng của. 58^33 là (8); 
số tận cùng của 23^35 là (7).

7 tháng 10 2016

cách làm bài toán tìm chữ số tận cùng của 58^33

18 tháng 8 2017

Ta có : \(A=3+3^2+3^3+...........+3^{100}\)

\(\Rightarrow3A=3^2+3^3+3^4+......+3^{101}\)

\(\Rightarrow3A-A=3^{101}-3\)

\(\Rightarrow2A=3^{101}-3\)

\(\Rightarrow2A+3=3^{101}\)

Vậy x = 101

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:
\(A=1+3+(3^2+3^3+3^4+3^5)+(3^6+3^7+3^8+3^9)+...+(3^{46}+3^{47}+3^{48}+3^{49})\)

\(=4+3^2(1+3+3^2+3^3)+3^6(1+3+3^2+3^3)+....+3^{46}(1+3+3^2+3^3)\)

\(=4+3^2.40+3^6.40+....+3^{46}.40\)

\(=10(4.3^2+4.3^6+..+4.3^{46})+4\)

Vậy $A$ có tận cùng là $4$

 

12 tháng 10 2019

Ta có : \(3A=3+3^2+3^3+...+3^{102}\)

Lấy 3A trừ A theo vế ta có : 

\(3A-A=\left(3+3^2+3^3+...+3^{102}\right)-\left(1+3+3^2+...+3^{101}\right)\)

\(2A=3^{102}-1\)

\(A=\frac{3^{102}-1}{2}\)

Ta có : 3102 - 1 = 3100 + 2 - 1

                   = 325.4 + 2 - 1

                   = 325.4 . 32 - 1

                   = ....1 . 9 - 1

                   = ...9 - 1

                   = ...8

=> \(\frac{3^{102}-1}{2}=\overline{..8}:2=\overline{...4}\)

Vậy chữ số tận cùng của A là 4

12 tháng 10 2019

Nhân A thêm 3

Lấy 3A - A được 3^102 -1

A = (3^102-1)/2

3^4k có tận cùng là 1

nên A có tận cùng là 0

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:
$A=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+....+(3^{56}+3^{57}+3^{58}+3^{59})$

$=(1+3+3^2+3^3)+3^4(1+3+3^2+3^3)+...+3^{56}(1+3+3^2+3^3)$

$=(1+3+3^2+3^3)(1+3^4+...+3^{56})$

$=40.(1+3^4+...+3^{56})\vdots 10$

Do đó chữ số tận cùng của $A$ là $0$

28 tháng 2 2017