Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quá đơn giản.
3^50 + 1 chia 3 dư 1.
Mặt khác tích 2 số tự nhiên liên tiếp phải chia hết cho 3 (khi một trong 2 số chia hết cho 3) hoặc chia 3 dư 2 (khi 1 số chia 3 dư 1 và 1 số chia 3 dư 2).
Vậy 3^50 + 1 không thể là tích 2 số tự nhiên liên tiếp.
Ta có 3050 có chữ số tận cùng là 0
1 có chữ số tận cùng là 1
Vậy A có chữ số tận cùng là 1 mà tích 2 số tự nhiên liên tiếp không thể là 1
nên A không thể là tích 2 số tự nhiên liên tiếp
a, n-2;n;n+2 ( n là số tự nhiên lẻ >= 3 )
b,n(n+2)-n(n-2) = 20 <=> n(n+2-n+2)=20
<=> 4n = 20 <=> n=5
vậy 3 số đó là 3,5,7
(2n+3)(2n+5)−(2n+1)(2n+3)=20(4n2+10n+6n+15)−(4n2+6n+2n+3)=204n2+10n+6n+15−4n2−6n−2n−3=208n+12=208n=8⇔x=1(2n+3)(2n+5)−(2n+1)(2n+3)=20(4n2+10n+6n+15)−(4n2+6n+2n+3)=204n2+10n+6n+15−4n2−6n−2n−3=208n+12=208n=8⇔x=1
Vậy ba số tự nhiên lẻ tiên tiếp cần tìm là 3(=2.1+1);5(=2.1+2);7(=2.1+5)
350 +1 chia 3 dư 1 nên nó không thể là tích của 2 số tự nhiên liên tiếp, vì nếu là tích của 2 số tự nhiên liên tiếp thì nó chia cho 3 dư 0 hoặc dư 2
Giả sử \(A\) có thể viết thành tích của hai số tự nhiên liên tiếp.
Do đó \(A\) có dạng \(A=n\left(n+1\right)\) với \(n\in N\)
Hay \(3^{2013}+1=n\left(n+1\right)\Leftrightarrow3^{2013}+1=n^2+n\)
\(\Leftrightarrow4\left(3^{2013}+1\right)+1=4n^2+4n+1\)
\(\Leftrightarrow4.3^{2013}+5=\left(2n+1\right)^2\Leftrightarrow3\left(4.3^{2012}+1\right)+2=\left(2n+1\right)^2\) (*)
Vì \(3\left(4.3^{2012}+1\right)+2\) chia 3 dư 2. Mà \(\left(2n+1\right)^2\) là số chính phương nên chia 3 chỉ dư \(0;1\)
Do đó (*) vô lý . Vậy \(A\)không thể viết thành tích của hai số tự nhiên liên tiếp.