Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài giải mang tính chất hướng dẩn
a) thay \(A\) vào \(\left(d\right)\) \(\Rightarrow\left(d\right)\Leftrightarrow-2k-3\left(3k-1\right)-6=0\Leftrightarrow k=???\)
ta có : \(\left(d\right)\) có dạng tổng quát là \(\left(d\right):y=\dfrac{2k}{1-3k}x+6\)
\(\Rightarrow\) hệ số góc của \(\left(d\right)\) là \(\dfrac{2k}{1-3k}=???\)
b) ta có : \(2kx+\left(3k-1\right)y-6=0\) \(\Leftrightarrow2kx+3ky-y-6=0\)
\(\Leftrightarrow k\left(2x+3y\right)-\left(y+6\right)=0\)
điểm cố định tức là không thay đổi vì giá trị của k
\(\Rightarrow\left\{{}\begin{matrix}2x+3y=0\\y+6=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=?\\y=?\end{matrix}\right.\) khi đó \(S\left(x;y\right)\) là điểm cố định cần tìm
a: Thay x=-1 và y=-3 vào (d),ta được:
-2k-3(3k-1)-6=0
=>-2k-9k+3-6=0
=>-11k-3=0
=>k=-3/11
b: 2kx+(3k-1)y-6=0
=>2kx+3ky-y-6=0
=>k(2x+3y)-y-6=0
Điểm B có tọa độ là:
2x+3y=0 và y+6=0
=>y=-6; 2x=-3y
=>y=-6; x=-3/2y=-3/2*(-6)=9
Sửa đề: (2m+3)x+(m+5)y+(4m-1)=0(1)
a: Khi m=-1 thì (1) trở thành (-2*1+3)x+(-1+5)y+(-4-1)=0
=>x+4y-5=0
=>x+4y=5
=>4y=-x+5
=>y=-1/4x+5/4
Tới đây bạn tự vẽ đồ thị nha
b: (1) =>2mx+3x+my+5y+4m-1=0
=>m(2x+y+4)+3x+5y-1=0
Điểm mà (d) luôn đi qua có dạng là
2x+y+4=0và 3x+5y-1=0
=>x=-3; y=2
Sửa đề: (2m+3)x+(m+5)y+(4m-1)=0(1)
a: Khi m=-1 thì (1) trở thành (-2*1+3)x+(-1+5)y+(-4-1)=0
=>x+4y-5=0
=>x+4y=5
=>4y=-x+5
=>y=-1/4x+5/4
Tới đây bạn tự vẽ đồ thị nha
b: (1) =>2mx+3x+my+5y+4m-1=0
=>m(2x+y+4)+3x+5y-1=0
Điểm mà (d) luôn đi qua có dạng là
2x+y+4=0và 3x+5y-1=0
=>x=-3; y=2
Lời giải:
a. PTĐT song song với d có dạng: $y=3x+b$
Vì nó đi qua $A$ nên: $3=3(-2)+b\Rightarrow b=9$
Vậy ptđt có dạng: $y=3x+9$
b. PTĐT vuông góc với d có dạng: $y=-\frac{1}{3}x+b$
Vì nó đi qua $A$ nên: $3=\frac{-1}{3}.(-2)+b$
$\Rightarrow b=\frac{7}{3}$
Vậy ptđt có dạng $y=\frac{-1}{3}x+\frac{7}{3}$
c. PTĐT có dạng $y=ax+b$. Vì nó đi qua $A$ và $B$ nên:
\(\left\{\begin{matrix} 3=-2a+b\\ 4=-3a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-1\\ b=1\end{matrix}\right.\)
Vậy ptđt có dạng $y=-x+1$
a) Gọi (d1): y=ax+b
Vì (d1)//(d) nên a=3
hay (d1): y=3x+b
Thay x=-2 và y=3 vào (d1), ta được:
\(3\cdot\left(-2\right)+b=3\)
\(\Leftrightarrow b=9\)
Vậy: (d1): y=3x+9