K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2023
 
  • dotrungminhnhat
  • 14/08/2021

Ta có: 

 = `21 . 43 . 65....200199`

 < `21.32.54......199198`

 �² < `2.4.6...2001.3.5.199.2.3.5....1991.2.4....198`

= 200.2=400

 �<20.

Để chứng minh A > 14, ta làm giảm mỗi phân số của A bằng cách dùng bất đẳng thức:

`�+1� > �+2�+1`.

Chứng minh tương tự ta có:  14<�

Vậy 14<�<20.

7 tháng 4 2019

nà ní ko có quy luật à 

16 tháng 3 2019

Câu a:

TH1 : $n = 3k$

thì $2^n - 1 = 2^{3k} - 1 = 8^k - 1 = (8-1)A = 7A$ chia hết cho $7$

TH2 : $n = 3k+1$

thì $2^n - 1 = 2^{3k+1} - 1 = 2\cdot 8^{k} - 1 = 2(8^k - 1) + 1 = 2\cdot (8-1)A + 1 = 2\cdot 7A + 1$ chia $7$ dư $1$ nên $2^n-1$ không chia hết cho $7$

TH3 : $n = 3k+2$

thì $2^n - 1 = 2^{3k+2} - 1 = 4\cdot 8^k - 1 = 4(8^k - 1) + 3 = 4\cdot (8 - 1)A + 3 = 4\cdot 7A + 3$ chia $7$ dư $3$ nên $2^n-1$ không chia hết cho $7$

Vậy với mọi $n \in \mathbb{Z^+}$ chia hết cho $3$ thì $2^n-1$ chia hết cho $7$

-Nguyễn Thành Trương-

16 tháng 3 2019

Câu 1b)

+ Với n = 2 ⇒ 3^2−1=8 chia hết cho 8
+ Giả sử với n = k ( k > 1) thì 3^k−1 cũng chia hết cho 8
+ Ta phải chức minh với n = k + 1 thì 3^n − 1 cũng chia hết cho 8 3^n−1=3^k+1−1=3.3^k−1=3.3^k−3=8=3(3^k−1)+8
Ta có 3^k−1 chia hết cho 8
⇒3(3^k−1)chia hết cho 8; 8 chia hết cho 8
=> 3^k+1−1 chia hết cho 8
Kết luận 3^n−1 chia hết cho 8 với n∈N

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

9 tháng 7 2015

Bít rồi sao còn tạo câu hỏi?

9 tháng 7 2015

a) n(n+2)

 b) (3n-2)3n 

c) ( 1) 1 n n  2 

d) 1+n2 e) n(n+5) 

f) (3n-2)(3n+1) 

g) n ( n  3) 2 n  n  

h) ( 1)( 2) 2

 i) n ( n  1)( n  2)

 

23 tháng 4 2018

1 . a) Thực hiện so sánh 3a và 3b, 3a+1 và 3b+1 từ đó rút ra điêu cần chứng minh

b) Thực hiện so sánh -2a và -2b, -2a - 5 và -2b -5 từ đó rút ra điêu cần chứng minh

Cậu tự trình bày nhé ? Giảng sơ sơ thế là hiểu ấy

\(a)5-\left(x-6\right)=4\left(3-2x\right)\)

\(\Leftrightarrow5-x+6=12-8x\)

\(\Leftrightarrow-x+8x=12-5-6\)

\(\Leftrightarrow7x=1\Leftrightarrow x=\frac{1}{7}\)

6 tháng 2 2019

a) 5-(x-6)=4(3-2x)

<=>5-x-6=12-8x

<=>-x+8x=2-5-6

<=>7x=1

<=>x=1/7

17 tháng 6 2017

\(a,A=-1+3-5+7-9+...-2013+2015-2017=\left(-1+3\right)+\left(-5+7\right)+...+\left(-2013+2015\right)-2017\)\(=2+2+..+2-2017\)

\(=2.504-2017=-1009\)

\(b,B=2-4+6-8+...+2014-2016+2018\)\(=2+\left(-4+6\right)+\left(-8+10\right)+...+\left(-2016+2018\right)==2+2+...+2\)\(=2+503.2=1008\)

15 tháng 1 2018

Mình làm mẫu câu a nha

a, pt <=> ( x-2/7 - 1 ) + ( x-1/8 - 1 ) = ( x-4/5 - 1 ) + ( x-3/6 - 1 )

<=> x-9/7 + x-9/8 = x-9/5 + x-9/6

<=> x-9/5 + x-9/6 - x-9/7 - x-9/8 = 0

<=> (x-9).(1/5+1/6-1/9-1/8) = 0

<=> x-9 = 0 ( vì 1/5+1/6-1/9-1/8 > 0 )

<=> x = 9

Vậy x = 9

Tk mk nha