K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2021

Ta có A = 1 + 2 + 22 + 23 + ... + 219

=> 2A = 2 + 22 + 23 + 24 + ... + 220

=> 2A - A = (2 + 22 + 23 + 24 + ... + 220) - (1 + 2 + 22 + 23 + ... + 219)

=> A = 220 - 1

Lại có B = 220

=> A và B là 2 số tự nhiên liên tiếp

10 tháng 2 2021

Ta có: \(A=2^0+2^1+2^2+2^3+...+2^{19}\)

 \(\Leftrightarrow2A=2^1+2^2+2^3+2^4...+2^{20}\)

 \(\Leftrightarrow2A-A=\left(2^1+2^2+2^3+2^4...+2^{20}\right)-\left(2^0+2^1+2^2+2^3+...+2^{19}\right)\)

 \(\Leftrightarrow A=2^{20}-1\)

Vì \(2^{20}-1\)và \(2^{20}\)là 2 STN liên tiếp

\(\Rightarrow\)\(A\)và \(B\)là 2 STN liên tiếp

20 tháng 12 2017

Biết y tỉ lệ nghịch với x, nếu y= - 12 thì x   =3. Ta có 

20 tháng 12 2017

A=(2+2mũ 2+2 mũ 3)+(2 mũ 4+2 mũ 5 + 2 mũ 6)+.....+(2 mũ 19 + 2 mũ 20 + 2 mũ 21)
A=14+2 mũ 3.(2+2 mũ 2+ 2 mũ 3)+.....+2 mũ 18(2+ 2 mũ 2 +2 mũ 3)

A=14x1+2 mũ 3x14+....+2 mũ 18 x 14

A=14(2 mũ 3 + ....+ 2 mũ 18)

vì 14: hết cho 14=>14(2 mũ 3+...+2 mũ 18): hết cho 14

=>A: hết cho 14

Bài 1: 

a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)

\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)

\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)

\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)

b) Ta có: \(\left(2x-3\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)

\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)

\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)

\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)

Bài 2: 

a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)

b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)

c) \(3+3^2+3^3+...+3^{2007}\)

\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{2005}\right)⋮13\)

22 tháng 10 2023

\(A=2+2^2+2^3+...+2^{20}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{19}\right)⋮3\)

\(A=2+2^2+2^3+...+2^{20}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{17}\right)⋮5\)

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

10 tháng 10 2017

\(B=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+.............+3^{24}\left(3+2^3+3^5\right)\)

\(B=273+273\cdot3^6+.............+273\cdot3^{24}\)

\(B=273\left(1+3^6+.......+3^{24}\right)⋮273\)

10 tháng 10 2017

\(A=\left(5+5^2\right)+\left(5+5^2\right)5^2+\left(5+5^2\right)5^4+\left(5+5^2\right)5^6+\left(5+5^2\right)5^8\)

\(A=30+30\cdot5^2+30\cdot5^4+30\cdot5^6+30\cdot5^8\)

\(A=30\left(1+5^2+5^4+5^6+5^8\right)⋮30\)

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

8 tháng 12 2019

\(a.x-143=57\)

\(x=200\)

\(b.\left(8x-12\right):4=3^3\)

\(8x-12=27.4\)

\(8x-12=108\)

\(8x=120\)

\(x=15\)

8 tháng 12 2019

\(d.10+2x=4^2\)

\(2x=16-10\)

\(2x=6\)

\(x=3\)

22 tháng 2 2020

a) S=\(1-3+3^2-3^3+...+3^{98}-3^{99}.\)

=\((1-3+3^2-3^3)+...+3^{96}-3^{97}+3^{98}-3^{99}.\)

=\(\left(1-3+3^2-3^3\right)+..+3^{96}\left(1-3+3^2-3^3\right)\)

=(\(1-3+3^2-3^3\))(1+\(3^4+...+3^{92}+3^{96})\)

=-20(1+\(3^4+...+3^{92}+3^{96})\)là bội của -20

22 tháng 2 2020

b)S = 1 - 3 + 3^2 - 3^3 +...+ 3^98 - 3^99

=> 3S= 3 - 3^2 + 3^3 - 3^4 +...+ 3^99 - 3^100

=> 3S+S = 1 - 3^100

=>4S=1 - 3^100

=> S = \(\frac{1-3^{100}}{^4}\)

Do S chia hết cho -20 nên S chia hết cho 4 do đó 1-3^100 chia hết cho 4 suy ra 3^100 chia 4 dư 1

4 tháng 1 2023

a, Bội (6) = {0; 6}

b, Số đối của: -4 = 4 ; 0 = 0

c, \(3^2+10:2=9+10:2=9+5=14\)

Câu 2:

\(\left(15-\left[3^{20}:3^{19}+2022^0\right]\right):11=\left(15-\left[3^{20-19}+1\right]\right):11=\left(15-\left[3^1+1\right]\right):11\)

\(=\left(15-4\right):11=11:11=1\)

Câu 3:

\(2x-7=39\)

\(2x=39+7\)

\(2x=46\)

\(x=46:2\)

\(x=23\)