K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2019

Ax3= 1x2x3 + 2x3x3+.....+29x30x3
lấy B= 1x2x3+ 2x3x4+......+29x30x31
B- Ax3= 0 + 1x2x3+ 2x3x4+ 28x29x30= B- 29x30x31. Suy ra Ax3= 29x30x31

9 tháng 1 2017

Ax3= 1x2x3 + 2x3x3+.....+29x30x3 lấy B= 1x2x3+ 2x3x4+......+29x30x31 B- Ax3= 0 + 1x2x3+ 2x3x4+ 28x29x30= B- 29x30x31. Suy ra Ax3= 29x30x31

6 tháng 11 2017

\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{8x9}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

=\(1-\frac{1}{9}\)

=\(\frac{8}{9}\)

OK XONG NHỚ CHO MIK NHA

6 tháng 11 2017

\(\frac{1}{1\times2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+.......+\frac{1}{7x8}+\)\(\frac{1}{8x9}\)

=1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{8}-\frac{1}{9}\)

=1-\(\frac{1}{9}\)

=\(\frac{8}{9}\)

15 tháng 6 2016

1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/99×100

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100

= 1 - 1/100

= 99/100

9 tháng 9 2017

\(A=\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{7.8}\)

\(\Rightarrow5A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)

\(\Rightarrow5A=1.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{8}\right)\)

\(\Rightarrow5A=1-\frac{1}{8}\)

\(\Rightarrow A=\left(1-\frac{1}{8}\right).\frac{1}{5}=\frac{7}{40}\)

9 tháng 9 2017

\(A=\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{7.8}\)

\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{5}{7.8}\right)\)

\(A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\right)\)

\(A=5\left(1-\frac{1}{8}\right)\)

\(A=5.\frac{7}{8}\)

\(A=\frac{38}{8}\)

10 tháng 2 2017

\(=1\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)

\(=1\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

10 tháng 2 2017

1/2-1/10=2/5

Chúc bạn may mắn@

2 tháng 4 2020

\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)

\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+\frac{6-5}{5\times6}\)

\(=\frac{3}{2\times3}-\frac{2}{2\times3}+\frac{4}{3\times4}-\frac{3}{3\times4}+\frac{5}{4\times5}-\frac{4}{4\times5}+\frac{6}{5\times6}-\frac{5}{5\times6}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(=\frac{1}{2}-\frac{1}{6}\)

\(=\frac{1}{3}\)

24 tháng 5 2017

Gọi B = 1x2 + 2 x 3 + 3 x 4 + ... + 2016 x2017

    3B = 3 x ( 1x2 + 2x3 + 3x4 + ... + 2016x2017)

         = 1x2x3 + 2x3x3 + 3x4x3 + ... + 2016x2017x3 )

         = 1x2x3 + 2x3x( 4-1) + 3x4x( 5 -2 ) + ... + 2016x2017x( 2018 - 2015)

         = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + ... + 2016x2017x2018 - 2015x2016x2017

         = 2016 x2017 x2018

      B = 672 x2017 x2018

Mà A = \(\frac{672x2017x2018}{2017x2018}\)

         =  672

Vậy A = 672

1 tháng 7 2016

= 9/10

k nha

2 tháng 8 2015

1.

\(A=\frac{1.2}{2.2}.\frac{2.3}{3.3}.\frac{3.4}{4.4}......\frac{2012.2013}{2013.2013}\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.........\frac{2012}{2013}\)

\(A=\frac{1.2.3.4.....2012}{2.3.4.5......2013}\)

\(A=\frac{1}{2013}\)

 

\(B=\frac{2012.2013-2012.2012}{2012.2011+2012.2}\)

\(B=\frac{2012\left(2013-2012\right)}{2012\left(2011+2\right)}\)

\(B=\frac{2013-2012}{2011+2}\)

\(B=\frac{1}{2013}\)

\(Vì:\frac{ 1}{2013}=\frac{1}{2013}\)

\(\Rightarrow\frac{1.2}{2.2}.\frac{2.3}{3.3}.\frac{3.4}{4.4}......\frac{2012.2013}{2013.2013}=\frac{2012.2013-2012.2012}{2012.2011+2012.2}\)

\(Hay: A=B\)

10 tháng 6 2018

\(A=\frac{1\times2}{2\times2}\times\frac{2\times3}{3\times3}\times\frac{3\times4}{4\times4}\times\frac{4\times5}{5\times5}\times...\times\frac{2012\times2013}{2013\times2013}\)

\(\Rightarrow A=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times...\times\frac{2012}{2013}\)

\(\Rightarrow A=\frac{1\times2\times3\times4\times...\times2012}{2\times3\times4\times5\times...\times2013}\)

\(\Rightarrow A=\frac{1}{2013}\)

\(B=\frac{2012\times2013-2012\times2012}{2012\times2011+2012\times2}\)

\(\Rightarrow B=\frac{2012\times\left(2013-2012\right)}{2012\times\left(2011+2\right)}\)

\(\Rightarrow B=\frac{2012\times1}{2012\times2013}\)

\(\Rightarrow B=\frac{1}{2013}\)