K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2019

tui cần

 gấp nhé

16 tháng 11 2019

a,3A=3+3^2+3^3+...+3^2020

=>3A-A=(3+3^2+3^2+3^3+...+3^2021)-(1+3+3^2+3^3+...+3^2020)

=>2A=3^2021-1=>A=\(\frac{3^{2021}-1}{2}\)

1 tháng 10 2018

a)31x32x33x........x3100

=31+2+3+4+...+100

=3(100+1)x(100-1+1):2

=3101x100:2

=35050

Bài b mình không biết làm

2 tháng 10 2018

thank nha

23 tháng 12 2019

a) \(A=1+3+...+3^{50}\)

\(3A=3+3^2+...+3^{51}\)

\(3A-A=2A=3^{51}-1\Rightarrow A=\frac{3^{51}-1}{2}\)

B) \(A=\left(1+3+3^3\right)+\left(3^2+3^3+3^4\right)+....+\left(3^{48}+3^{49}+3^{50}\right)\)

\(=13+13\cdot3^2+...+13\cdot3^{48}\)

\(=13\left(1+3^2+...+3^{48}\right)⋮2\)

\(\Rightarrow A⋮3\)

C)\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5+3^6\right)+....+\left(3^{47}+3^{48}+3^{49}+3^{50}\right)\)

\(=13+3^3\cdot40+3^7\cdot40+...+3^{47}\cdot40\)

\(=13+40\left(3^3+3^7+...+3^{47}\right)\)

Vậy A chia cho 40 dư 13

d) theo câu C

\(40\left(3^3+3^7+...+3^{47}\right)=10\cdot4\cdot\left(3^3+...+3^{47}\right)\)

có tân cùng  là 0

Mà + thêm 13 nên có tận cùng là 3

23 tháng 12 2019

Cau B mk hơi lỗi xíu , bạn tự sửa nha

19 tháng 10 2018

A.3 =3+ 33 +34 + .... + 3100  

A.3 - A =3+ 3+ 34 +.....+3100 - 3 - 31- 32 -....-399

A.2 = 3100 - 3

ta có 3100 = 34*25 suy ra 3100 tận cùng =1 suy ra 3100 -3 tận cùng bằng 8 

Vậy A tận cùng bằng 4

10 tháng 7 2016

a, 2A= 2+2^2+2^3+2^4+2^5+...+2^2017

=> 2A-A= 2^2017-1

=> A= 2^2017-1/2

16 tháng 10 2017

a, \(A=1+2+2^2+2^3+...+2^{2005}\)

\(2A=2.\left(1+2+2^2+2^3+...+2^{2005}\right)\)

\(2A=2+2^2+2^3+...+2^{2006}\)

\(A=2A-A=\left(2+2^2+2^3+...+2^{2006}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)

\(A=2^{2006}-1\)

c, Số số hạng của A là : (2005 -  1) + 1 = 2005 (số hạng) 

Nếu nhóm 3 số hạng vào 1 nhóm thì có :  2005 : 3 = 668 nhóm dư 1 số hạng 

Ta có : 

\(A=\left(1+2\right)+\left[\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2003}+2^{2004}+2^{2005}\right)\right]\)

\(A=3+\left[2^2.\left(1+2+2^2\right)+2^5.\left(1+2+2^2\right)+...+2^{2003}.\left(1+2+2^2\right)\right]\)

\(A=3+\left(2^2.7+2^5.7+...+2^{2003}.7\right)\)

\(\Rightarrow A\div7\) dư 3 

d, Làm tương tự c

19 tháng 12 2018

bài này có trong đề thi cuối học kì 1 ko ???????

21 tháng 12 2018

a) Tìm được dư là 4227

b) Nhận xét: Số mũ của các số hạng có dạng 4k + 1 (k ∈ N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1 + 2 + 3 + … + 505

Vậy A có tận cùng là 5.