K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

Ta có :

a . A = 1 + 3 + 32 + 33 + ... + 399

         = ( 1 + 3 ) + ( 32 + 33 ) + ( 34 + 35 ) + ... + ( 398 + 399 )

         = 1. ( 1 + 3 ) + 32 . ( 1 + 3 ) + 34 . ( 1 + 3 ) + ... + 398 . ( 1 + 3 )

         = 1 . 4 + 32 . 4 + 34 . 4 + ... + 398 . 4

         = ( 1 + 32 + 34 + ... + 398 ) .4 \(⋮\)4 ( đpcm ) .

b . Vì 164 = 41 . 4

    Nên nếu A chia hết cho 41 thì A cũng chia hết cho 164 ( do A chia hết cho 4 )

          

1 tháng 9 2017

cảm ơn bạn.

1 tháng 9 2017

mk biết làm câu a thôi :(

1 tháng 9 2017

mình cũng chỉ làm được câu a thôi. hì hì

25 tháng 8 2016

Xét hiệu: 3(a + 2b) - (3a - 4b) = 3a + 6b - 3a + 4b = 10b chia hết cho 5.         (1)

Mặt khác: (a + 2b) chia hết cho 5  => 3(a + 2b) cũng chia hết cho 5                (2)

Từ (1) và (2) ta có: (3a - 4b) chia hết cho 5.

25 tháng 8 2016

Ta có (a+ 2b) chia hết cho 5.

Suy ra a+b+b tận cùng bằng 0,5.

Suy ra 2b = 0 ( số chẵn)

Xét 2TH

TH1 a có tận cùng = 0 suy ra 3a có tận cùng = 0

4b=2b*2 có tận cùng =0 (1)

TH2 a có tận cùng là 5 suy ra 3a có tận cùng = 5

4b=2b*2 có tận cùng =0 (2)

Từ 1 và 2 suy ra nếu (a+2b) chia hết cho 5 thì (3a -4b) chia hết cho 5

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

6 tháng 1 2017

ta xó: 3a+4b+5c \(⋮\)11

=>12a+16b+20c \(⋮\)11

=>12a+11b+5b+22c-2c

=>12a+5b-2c \(⋮\)11 (vì 11b \(⋮\)11 và 22c \(⋮\)11 )

vậy 12a+5b-2c \(⋮\)11.(đpcm)

chép ở đâu z bạn o0o đồ khùng o0o

tớ bít nè chắc ở SKTS_BFON

chép nhận tk đúng ko

5 tháng 1 2017

ta xó: 3a+4b+5c \(⋮\)11

=>12a+16b+20c \(⋮\)11

=>12a+11b+5b+22c-2c

=>12a+5b-2c \(⋮\)11 (vì 11b \(⋮\)11 và 22c \(⋮\)11 )

vậy 12a+5b-2c \(⋮\)11.(đpcm)

chúc năm mới hạnh phúc. k nha.

5 tháng 1 2017

lớp mấy

9 tháng 11 2017

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)

15 tháng 9 2023

Help me!

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:
a. Vì $p$ nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$.

Nếu $p$ chia $3$ dư $2$, $p$ có dạng $p=3k+2$. 

$p+4=3k+6\vdots 3$. Mà $p+4>3$ nên không là số nguyên tố (trái đề)

Do đó $p$ chia $3$ dư $1$

Khi đó: $p+8=3k+1+8=3(k+3)$ chia hết cho $3$. Mà $p+8>3$ nên $p+8$ là hợp số (đpcm)

b.

$\overline{abcd}=1000a+100b+10c+d$

$=1000a+96b+8c+(d+2c+4b)$

$=8(125a+12b+c)+(d+2c+4b)$

Vì $8(125a+12b+c)\vdots 8; d+2c+4b\vdots 8$

$\Rightarrow \overline{abcd}\vdots 8$

Ta có đpcm.