K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

Ta có :

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+.................+\dfrac{1}{9^2}\)

Xét :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{2^3}< \dfrac{1}{2.3}\)

..................................

\(\dfrac{1}{9^2}< \dfrac{1}{8.9}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...............+\dfrac{1}{8.9}\)

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}=\dfrac{8}{9}\)

\(\Rightarrow A< \dfrac{8}{9}\rightarrowđpcm\) \(\left(1\right)\)

Xét :

\(\dfrac{1}{2^2}>\dfrac{1}{2.3}\)

\(\dfrac{1}{2^3}>\dfrac{1}{3.4}\)

......................

\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+.............+\dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)

\(\Rightarrow A>\dfrac{2}{5}\rightarrowđpcm\)\(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Rightarrow\dfrac{8}{9}>A>\dfrac{2}{5}\rightarrowđpcm\)

~ Chúc bn học tốt ~

5 tháng 3 2019

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\left(1\right)\)

Tương tự:\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

                \(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\left(2\right)\)

Từ (1) và (2) => \(\frac{8}{9}>A>\frac{2}{5}\left(đpcm\right)\)

18 tháng 2 2021

\(\dfrac{1}{1\cdot2}>\dfrac{1}{2^2}>\dfrac{1}{2\cdot3},\dfrac{1}{2\cdot3}>\dfrac{1}{3^2}>\dfrac{1}{3\cdot4},...,\dfrac{1}{8\cdot9}>\dfrac{1}{9^2}>\dfrac{1}{9\cdot10}\)

\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}>\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\) \(\Rightarrow1-\dfrac{1}{9}>A>\dfrac{1}{2}-\dfrac{1}{10}\) \(\Rightarrow\dfrac{8}{9}>A>\dfrac{2}{5}\)

16 tháng 3 2016

đội tuyển toán trường THCS vĩnh tường

14 tháng 2 2023

\(P=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}\)

\(P=\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{9.9}\)

\(P< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{8.9}\)

\(P=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

\(P=1-\dfrac{1}{9}=\dfrac{8}{9}\)

\(\Rightarrow P< \dfrac{8}{9}\)

\(P=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}\)

\(P=\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{9.9}\)

\(P>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(P=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...\dfrac{1}{9}-\dfrac{1}{10}\)

\(P=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\)

\(\Rightarrow P>\dfrac{2}{5}\)

 

1 tháng 3 2018

Câu 1.8: Giải

*Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)

...

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(A>\dfrac{1}{2}-\dfrac{1}{10}\)

\(A>\dfrac{2}{5}\) (1)

*Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

...

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{8.9}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

\(A< 1-\dfrac{1}{9}\)

\(A< \dfrac{8}{9}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\)

AH
Akai Haruma
Giáo viên
26 tháng 10

Lời giải:

$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$

$> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{9.10}$
$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}$
$=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}(*)$

Lại có:

$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$

$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}(**)$
Từ $(*); (**)$ ta có đpcm.