Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow2A=2+2^2+2^3+...+2^{2003}\\ \Rightarrow2A-A=2+2^2+2^3+...+2^{2003}-1-2-...-2^{2002}\\ \Rightarrow A=2^{2003}-1=B\)
B = \(\frac{2001}{2002}+\frac{2002}{2003}\)
có: \(\frac{2000}{2001}>\frac{2000}{2001}+2002\)
\(\frac{2001}{2002}>\frac{2001}{2001}+2002\)
Vậy A>B
A = 1 + 2 + 22 + 23 + ... + 22002
=> 2A = 2 + 22 + 23 + 24 + ... + 22003
=> 2A - A = ( 2 + 22 + 23 + 24 + ... + 22003 ) - ( 1 + 2 + 22 + 23 + ... + 22002 )
A = 22003 - 1 < 22003
hay A < B
Vậy ...
\(A=1+2+2^2+2^3+...+2^{2002}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2002}+2^{2003}\)
\(\Rightarrow2A-A=2^{2003}-1\)
\(\Rightarrow A=2^{2003}-1\)
Vì \(2^{2003}-1< 2^{2003}\)
nên A < B
ta có : a = 1 + 2 + 2^2 + ... + 2^2002
=> 2a = 2 + 2^2 + 2^3 + ... + 2^2003
=> 2a-a = (2+2^2 + 2^3 + ... + 2^2003) - ( 1+2+2^2+...+2^2002)
=> a = 2^2003 - 1
Vậy a=b
A = 1 + 2 + 2² + ... + 2^2002
A = 1 + (2 + 2² + ... + 2^2002 )
Ta xét :
u1 = 2
u2 = 2.2 = 22
u3 = 2.22 = 2^3
u2002 = 2.2^2001 = 2^2002
Tổng cấp số nhân : S = u1.(1 - q^n) / (1 - q) = 2.(1 - 2^2002) / (1 - 2) = 2(2^2002 - 1) = 2^2003 - 2
A = 1 + 2^2003 - 2 = 2^2003 - 1
So sánh với B
2^2003 - 1 = 2^2003 - 1
Vậy B = A
Giải
Ta có\(A=\frac{2002}{2001}+\frac{2001}{2002}\)và \(B=\frac{2000}{2001}+\frac{2001}{2002}\)
Ta nhận xét thấy A và B cùng có chung 1 số hạng là \(\frac{2001}{2002}\)
Nên ta chỉ so sánh \(\frac{2002}{2001}\)và \(\frac{2000}{2001}\)ta so sánh 2 phân số đó với 1
Vì 2002>2001 nên \(\frac{2002}{2001}\)> 1
Vì 2000<2001 nên \(\frac{2000}{2001}\)<1
\(\Leftrightarrow\)\(\frac{2002}{2001}>\frac{2000}{2001}\)
\(\Leftrightarrow\)\(\frac{2002}{2001}+\frac{2001}{2002}>\frac{2000}{2001}+\frac{2001}{2002}\)
Vậy A>B
\(A=1+2+2^2+.....+2^{2002}\)
\(\Rightarrow2A=2+2^2+2^3+......+2^{2003}\)
\(\Rightarrow2A-A=2^{2013}-1=B\)
\(A=\frac{10^{2001}+1}{10^{2002}+1}=\frac{\left(10^{2001}+1\right)\left(10^{2003}+1\right)}{\left(10^{2002}+1\right)\left(10^{2003}+1\right)}=\frac{10^{4004}+10^{2001}+10^{2003}+1}{\left(10^{2002}+1\right)\left(10^{2003}+1\right)}\)
\(B=\frac{10^{2002}+1}{10^{2003}+1}=\frac{\left(10^{2002}+1\right)\left(10^{2002}+1\right)}{\left(10^{2003}+1\right)\left(10^{2002}+1\right)}=\frac{10^{4004}+2.10^{2002}+1}{\left(10^{2003}+1\right)\left(10^{2002}+1\right)}\)
Vì 102001 + 102003 < 2.102002 nên A < B