Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(M\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-1-x;4\right)\\\overrightarrow{MB}=\left(1-x;-2\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+2\overrightarrow{MB}=\left(1-3x;0\right)\)
\(\Rightarrow\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|=\sqrt{\left(1-3x\right)^2}\ge0\)
Dấu "=" xảy ra khi \(x=\frac{1}{3}\Rightarrow M\left(\frac{1}{3};0\right)\)
Gọi \(P\left(0;y\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{PA}=\left(-1;4-y\right)\\\overrightarrow{PB}=\left(1;-2-y\right)\\\overrightarrow{PC}=\left(3;4-y\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{PA}+2\overrightarrow{PB}-4\overrightarrow{PC}=\left(-11;5y-16\right)\)
\(\Rightarrow\left|\overrightarrow{PA}+\overrightarrow{PB}-4\overrightarrow{PC}\right|=\sqrt{11^2+\left(5y-16\right)^2}\ge11\)
Dấu "=" xảy ra khi \(5y-16=0\Rightarrow y=\frac{16}{5}\Rightarrow P\left(0;\frac{16}{5}\right)\)
a.
Gọi G là trọng tâm tam giác ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)
\(=\left|3\overrightarrow{MG}\right|=3\left|\overrightarrow{MG}\right|\)
\(\Rightarrow T_{min}\) khi và chỉ khi \(MG_{min}\Rightarrow MG=0\) hay M trùng G
Theo công thức trọng tâm: \(\left\{{}\begin{matrix}x_M=\dfrac{2-1+6}{3}=\dfrac{7}{3}\\y_M=\dfrac{3-1+0}{3}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{7}{3};\dfrac{2}{3}\right)\)
b.
Tương tự câu a, ta có \(T=3\left|\overrightarrow{MG}\right|\) đạt min khi MG đạt min
\(\Rightarrow\) M là hình chiếu vuông góc của G lên Ox
Mà \(G\left(\dfrac{7}{3};\dfrac{2}{3}\right)\Rightarrow M\left(\dfrac{7}{3};0\right)\)
c.
Do M thuộc Ox nên tọa độ có dạng: \(M\left(m;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(2-m;3\right)\\\overrightarrow{MB}=\left(-1-m;-1\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{u}=\left(3m+6;7\right)\)
\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\left(3m+6\right)^2+7^2}\ge\sqrt{0+7^2}=7\)
Dấu "=" xảy ra khi \(3m+6=0\Rightarrow m=-2\)
\(\Rightarrow M\left(-2;0\right)\)
Gọi \(M\left(x;0\right)\Rightarrow\overrightarrow{MA}\left(2-x;5\right)\) ; \(\overrightarrow{MB}=\left(-1-x;8\right)\); \(\overrightarrow{MC}=\left(4-x;-3\right)\)
a/ \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\left(5-3x;10\right)\)
\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\sqrt{\left(5-3x\right)^2+10^2}\ge10\)
\(T_{min}=10\) khi \(5-3x=0\Rightarrow x=\frac{5}{3}\Rightarrow M\left(\frac{5}{3};0\right)\)
b/ \(2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}=\left(17-4x;-7\right)\)
\(\Rightarrow A=\left|2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}\right|=\sqrt{\left(17-4x\right)^2+\left(-7\right)^2}\ge7\)
\(A_{min}=7\) khi \(17-4x=0\Rightarrow x=\frac{17}{4}\Rightarrow M\left(\frac{17}{4};0\right)\)
a.
Do K thuộc d nên tọa độ có dạng: \(K\left(a;2-a\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AK}=\left(a-3;-a-2\right)\\\overrightarrow{BK}=\left(a-2;1-a\right)\\\overrightarrow{CK}=\left(a+1;4-a\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AK^2=\left(a-3\right)^2+\left(-a-2\right)^2=2a^2-2a+13\\BK^2=\left(a-2\right)^2+\left(1-a\right)^2=2a^2-6a+5\\CK^2=\left(a+1\right)^2+\left(4-a\right)^2=2a^2-6a+17\end{matrix}\right.\)
\(T=AK^2-2BK^2-CK^2=2a^2-2a+13-2\left(2a^2-6a+5\right)-\left(2a^2-6a+17\right)\)
\(=-4a^2+16a-14=-4\left(a-2\right)^2+2\le2\)
Dấu "=" xảy ra khi \(a=2\Rightarrow K\left(2;0\right)\)
b. Điểm M là điểm nào nhỉ?
\(K\left(0;y\right)\Rightarrow\overrightarrow{KA}=\left(2;1-y\right)\) ; \(\overrightarrow{KB}=\left(6;-1-y\right)\)
\(\overrightarrow{KA}+\overrightarrow{KB}=\left(8;-2y\right)\)
\(\Rightarrow T=2\sqrt{4+\left(1-y\right)^2}+\sqrt{64+4y^2}\)
\(T=2\left(\sqrt{2^2+\left(1-y\right)^2}+\sqrt{4^2+y^2}\right)\)
\(T\ge2\sqrt{\left(2+4\right)^2+\left(1-y+y\right)^2}=2\sqrt{37}\)
\(T_{min}=2\sqrt{37}\) khi \(\frac{y}{1-y}=\frac{4}{2}\Rightarrow y=\frac{2}{3}\) \(\Rightarrow K\left(0;\frac{2}{3}\right)\)
a/ Gọi K (hay L gì đó) có tọa độ \(K\left(0;y\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;3\right)\\\overrightarrow{CK}=\left(-5;y-10\right)\end{matrix}\right.\)
Do AB//CK \(\Leftrightarrow\frac{-5}{4}=\frac{y-10}{3}\Rightarrow y=\frac{25}{4}\) \(\Rightarrow K\left(0;\frac{25}{4}\right)\)
b/ Gọi \(J\left(x;0\right)\Rightarrow\overrightarrow{JA}=\left(-1-x;2\right)\) ; \(\overrightarrow{JB}=\left(3-x;5\right)\); \(\overrightarrow{JC}=\left(5-x;10\right)\)
\(\Rightarrow\overrightarrow{JA}-2\overrightarrow{JB}+4\overrightarrow{JC}=\left(13-3x;32\right)\)
\(\Rightarrow T=\left|\overrightarrow{JA}-2\overrightarrow{JB}+4\overrightarrow{JC}\right|=\sqrt{\left(13-3x\right)^2+32^2}\ge32\)
\(T_{min}=32\) khi \(13-3x=0\Leftrightarrow x=\frac{13}{3}\Rightarrow J\left(\frac{13}{3};0\right)\)
c/ Gọi \(Q\left(0;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AQ}=\left(1;y-2\right)\\\overrightarrow{QC}=\left(5;10-y\right)\end{matrix}\right.\)
\(\Rightarrow T=AQ+CQ=\sqrt{1^2+\left(y-2\right)^2}+\sqrt{5^2+\left(10-y\right)^2}\)
\(\Rightarrow T\ge\sqrt{\left(1+5\right)^2+\left(y-2+10-y\right)^2}=10\)
\(T_{min}=10\) khi \(\frac{y-2}{1}=\frac{10-y}{5}\Leftrightarrow y=\frac{10}{3}\Rightarrow Q\left(0;\frac{10}{3}\right)\)
d/ Gọi \(P\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AP}=\left(x+1;-2\right)\\\overrightarrow{PB}=\left(3-x;5\right)\end{matrix}\right.\)
\(\Rightarrow T=PA+PB=\sqrt{\left(x+1\right)^2+\left(-2\right)^2}+\sqrt{\left(3-x\right)^2+5^2}\)
\(\Rightarrow T\ge\sqrt{\left(x+1+3-x\right)^2+\left(-2+5\right)^2}=5\)
\(T_{min}=5\) khi \(\frac{x+1}{-2}=\frac{3-x}{5}\Rightarrow x=-\frac{11}{3}\Rightarrow P\left(-\frac{11}{3};0\right)\)